MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem2 Unicode version

Theorem addclprlem2 8521
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  x  e.  ( A  +P.  B ) ) )
Distinct variable groups:    x, g, h    x, A    x, B
Allowed substitution hints:    A( g, h)    B( g, h)

Proof of Theorem addclprlem2
StepHypRef Expression
1 addclprlem1 8520 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )
21adantlr 698 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )
3 addclprlem1 8520 . . . . . 6  |-  ( ( ( B  e.  P.  /\  h  e.  B )  /\  x  e.  Q. )  ->  ( x  <Q  ( h  +Q  g )  ->  ( ( x  .Q  ( *Q `  ( h  +Q  g
) ) )  .Q  h )  e.  B
) )
4 addcomnq 8455 . . . . . . 7  |-  ( g  +Q  h )  =  ( h  +Q  g
)
54breq2i 3928 . . . . . 6  |-  ( x 
<Q  ( g  +Q  h
)  <->  x  <Q  ( h  +Q  g ) )
64fveq2i 5380 . . . . . . . . 9  |-  ( *Q
`  ( g  +Q  h ) )  =  ( *Q `  (
h  +Q  g ) )
76oveq2i 5721 . . . . . . . 8  |-  ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  =  ( x  .Q  ( *Q `  ( h  +Q  g ) ) )
87oveq1i 5720 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  h )  =  ( ( x  .Q  ( *Q `  ( h  +Q  g ) ) )  .Q  h )
98eleq1i 2316 . . . . . 6  |-  ( ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  h )  e.  B  <->  ( ( x  .Q  ( *Q `  ( h  +Q  g
) ) )  .Q  h )  e.  B
)
103, 5, 93imtr4g 263 . . . . 5  |-  ( ( ( B  e.  P.  /\  h  e.  B )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  h )  e.  B
) )
1110adantll 697 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  h )  e.  B
) )
122, 11jcad 521 . . 3  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  e.  A  /\  ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  h )  e.  B ) ) )
13 simpl 445 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) ) )
14 simpl 445 . . . . 5  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  A  e.  P. )
15 simpl 445 . . . . 5  |-  ( ( B  e.  P.  /\  h  e.  B )  ->  B  e.  P. )
1614, 15anim12i 551 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
17 df-plp 8487 . . . . 5  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  +Q  z ) } )
18 addclnq 8449 . . . . 5  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
1917, 18genpprecl 8505 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  e.  A  /\  ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  h )  e.  B )  ->  (
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g )  +Q  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  h ) )  e.  ( A  +P.  B
) ) )
2013, 16, 193syl 20 . . 3  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  e.  A  /\  ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  h )  e.  B )  ->  (
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g )  +Q  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  h ) )  e.  ( A  +P.  B
) ) )
2112, 20syld 42 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  +Q  ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  h ) )  e.  ( A  +P.  B ) ) )
22 distrnq 8465 . . . . 5  |-  ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  ( g  +Q  h ) )  =  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  +Q  (
( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  h ) )
23 mulassnq 8463 . . . . 5  |-  ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  ( g  +Q  h ) )  =  ( x  .Q  (
( *Q `  (
g  +Q  h ) )  .Q  ( g  +Q  h ) ) )
2422, 23eqtr3i 2275 . . . 4  |-  ( ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g )  +Q  ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  h ) )  =  ( x  .Q  ( ( *Q
`  ( g  +Q  h ) )  .Q  ( g  +Q  h
) ) )
25 mulcomnq 8457 . . . . . . 7  |-  ( ( *Q `  ( g  +Q  h ) )  .Q  ( g  +Q  h ) )  =  ( ( g  +Q  h )  .Q  ( *Q `  ( g  +Q  h ) ) )
26 elprnq 8495 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
27 elprnq 8495 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  h  e.  B )  ->  h  e.  Q. )
2826, 27anim12i 551 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( g  e.  Q.  /\  h  e.  Q. )
)
29 addclnq 8449 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
30 recidnq 8469 . . . . . . . 8  |-  ( ( g  +Q  h )  e.  Q.  ->  (
( g  +Q  h
)  .Q  ( *Q
`  ( g  +Q  h ) ) )  =  1Q )
3128, 29, 303syl 20 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( g  +Q  h )  .Q  ( *Q `  ( g  +Q  h ) ) )  =  1Q )
3225, 31syl5eq 2297 . . . . . 6  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( *Q `  ( g  +Q  h
) )  .Q  (
g  +Q  h ) )  =  1Q )
3332oveq2d 5726 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  .Q  (
( *Q `  (
g  +Q  h ) )  .Q  ( g  +Q  h ) ) )  =  ( x  .Q  1Q ) )
34 mulidnq 8467 . . . . 5  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
3533, 34sylan9eq 2305 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  .Q  (
( *Q `  (
g  +Q  h ) )  .Q  ( g  +Q  h ) ) )  =  x )
3624, 35syl5eq 2297 . . 3  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  +Q  (
( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  h ) )  =  x )
3736eleq1d 2319 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  +Q  ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  h ) )  e.  ( A  +P.  B )  <->  x  e.  ( A  +P.  B ) ) )
3821, 37sylibd 207 1  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  x  e.  ( A  +P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Q.cnq 8354   1Qc1q 8355    +Q cplq 8357    .Q cmq 8358   *Qcrq 8359    <Q cltq 8360   P.cnp 8361    +P. cpp 8363
This theorem is referenced by:  addclpr  8522
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6546  df-ni 8376  df-pli 8377  df-mi 8378  df-lti 8379  df-plpq 8412  df-mpq 8413  df-ltpq 8414  df-enq 8415  df-nq 8416  df-erq 8417  df-plq 8418  df-mq 8419  df-1nq 8420  df-rq 8421  df-ltnq 8422  df-np 8485  df-plp 8487
  Copyright terms: Public domain W3C validator