MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcan2 Structured version   Unicode version

Theorem addcan2 9754
Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )

Proof of Theorem addcan2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex 9750 . . 3  |-  ( C  e.  CC  ->  E. x  e.  CC  ( C  +  x )  =  0 )
213ad2ant3 1017 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( C  +  x )  =  0 )
3 oveq1 6277 . . . 4  |-  ( ( A  +  C )  =  ( B  +  C )  ->  (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x ) )
4 simpl1 997 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
5 simpl3 999 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
6 simprl 754 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
74, 5, 6addassd 9607 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  ( A  +  ( C  +  x ) ) )
8 simprr 755 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  x )  =  0 )
98oveq2d 6286 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  ( C  +  x ) )  =  ( A  +  0 ) )
10 addid1 9749 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
114, 10syl 16 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  0 )  =  A )
127, 9, 113eqtrd 2499 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  A )
13 simpl2 998 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
1413, 5, 6addassd 9607 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  ( B  +  ( C  +  x ) ) )
158oveq2d 6286 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  ( C  +  x ) )  =  ( B  +  0 ) )
16 addid1 9749 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  +  0 )  =  B )
1713, 16syl 16 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  0 )  =  B )
1814, 15, 173eqtrd 2499 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  B )
1912, 18eqeq12d 2476 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x )  <->  A  =  B ) )
203, 19syl5ib 219 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  ->  A  =  B ) )
21 oveq1 6277 . . 3  |-  ( A  =  B  ->  ( A  +  C )  =  ( B  +  C ) )
2220, 21impbid1 203 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B ) )
232, 22rexlimddv 2950 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805  (class class class)co 6270   CCcc 9479   0cc0 9481    + caddc 9484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-ltxr 9622
This theorem is referenced by:  addcom  9755  addcan2i  9763  addcomd  9771  addcan2d  9773  muleqadd  10189  axlowdimlem14  24463  fargshiftf1  24842  subfacp1lem6  28896
  Copyright terms: Public domain W3C validator