MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasssr Structured version   Unicode version

Theorem addasssr 9495
Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
addasssr  |-  ( ( A  +R  B )  +R  C )  =  ( A  +R  ( B  +R  C ) )

Proof of Theorem addasssr
Dummy variables  u  v  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9464 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 9482 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  )
3 addsrpr 9482 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
4 addsrpr 9482 . . 3  |-  ( ( ( ( x  +P.  z )  e.  P.  /\  ( y  +P.  w
)  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. ( x  +P.  z
) ,  ( y  +P.  w ) >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  +P.  z
)  +P.  v ) ,  ( ( y  +P.  w )  +P.  u ) >. ]  ~R  )
5 addsrpr 9482 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
x  +P.  ( z  +P.  v ) ) ,  ( y  +P.  (
w  +P.  u )
) >. ]  ~R  )
6 addclpr 9426 . . . . 5  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  +P.  z
)  e.  P. )
7 addclpr 9426 . . . . 5  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  +P.  w
)  e.  P. )
86, 7anim12i 564 . . . 4  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
98an4s 827 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
10 addclpr 9426 . . . . 5  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
11 addclpr 9426 . . . . 5  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
1210, 11anim12i 564 . . . 4  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
1312an4s 827 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
14 addasspr 9430 . . 3  |-  ( ( x  +P.  z )  +P.  v )  =  ( x  +P.  (
z  +P.  v )
)
15 addasspr 9430 . . 3  |-  ( ( y  +P.  w )  +P.  u )  =  ( y  +P.  (
w  +P.  u )
)
161, 2, 3, 4, 5, 9, 13, 14, 15ecovass 7455 . 2  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  +R  B
)  +R  C )  =  ( A  +R  ( B  +R  C
) ) )
17 dmaddsr 9492 . . 3  |-  dom  +R  =  ( R.  X.  R. )
18 0nsr 9486 . . 3  |-  -.  (/)  e.  R.
1917, 18ndmovass 6444 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  +R  B )  +R  C
)  =  ( A  +R  ( B  +R  C ) ) )
2016, 19pm2.61i 164 1  |-  ( ( A  +R  B )  +R  C )  =  ( A  +R  ( B  +R  C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842  (class class class)co 6278   P.cnp 9267    +P. cpp 9269    ~R cer 9272   R.cnr 9273    +R cplr 9277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-omul 7172  df-er 7348  df-ec 7350  df-qs 7354  df-ni 9280  df-pli 9281  df-mi 9282  df-lti 9283  df-plpq 9316  df-mpq 9317  df-ltpq 9318  df-enq 9319  df-nq 9320  df-erq 9321  df-plq 9322  df-mq 9323  df-1nq 9324  df-rq 9325  df-ltnq 9326  df-np 9389  df-plp 9391  df-ltp 9393  df-enr 9463  df-nr 9464  df-plr 9465
This theorem is referenced by:  map2psrpr  9517  axaddass  9563  axmulass  9564  axdistr  9565
  Copyright terms: Public domain W3C validator