MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspi Structured version   Unicode version

Theorem addasspi 9167
Description: Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addasspi  |-  ( ( A  +N  B )  +N  C )  =  ( A  +N  ( B  +N  C ) )

Proof of Theorem addasspi
StepHypRef Expression
1 pinn 9150 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 9150 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 9150 . . . 4  |-  ( C  e.  N.  ->  C  e.  om )
4 nnaass 7163 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
51, 2, 3, 4syl3an 1261 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
6 addclpi 9164 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  e.  N. )
7 addpiord 9156 . . . . . 6  |-  ( ( ( A  +N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C
)  =  ( ( A  +N  B )  +o  C ) )
86, 7sylan 471 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +N  B
)  +o  C ) )
9 addpiord 9156 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
109oveq1d 6207 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  +o  C
)  =  ( ( A  +o  B )  +o  C ) )
1110adantr 465 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +o  C )  =  ( ( A  +o  B
)  +o  C ) )
128, 11eqtrd 2492 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +o  B
)  +o  C ) )
13123impa 1183 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( ( A  +o  B )  +o  C ) )
14 addclpi 9164 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  e.  N. )
15 addpiord 9156 . . . . . 6  |-  ( ( A  e.  N.  /\  ( B  +N  C
)  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +N  C
) ) )
1614, 15sylan2 474 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +N  C ) ) )
17 addpiord 9156 . . . . . . 7  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  =  ( B  +o  C ) )
1817oveq2d 6208 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  +o  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C
) ) )
1918adantl 466 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +o  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
2016, 19eqtrd 2492 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
21203impb 1184 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C ) ) )
225, 13, 213eqtr4d 2502 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( A  +N  ( B  +N  C
) ) )
23 dmaddpi 9162 . . 3  |-  dom  +N  =  ( N.  X.  N. )
24 0npi 9154 . . 3  |-  -.  (/)  e.  N.
2523, 24ndmovass 6353 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C
)  =  ( A  +N  ( B  +N  C ) ) )
2622, 25pm2.61i 164 1  |-  ( ( A  +N  B )  +N  C )  =  ( A  +N  ( B  +N  C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758  (class class class)co 6192   omcom 6578    +o coa 7019   N.cnpi 9114    +N cpli 9115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-oadd 7026  df-ni 9144  df-pli 9145
This theorem is referenced by:  addassnq  9230
  Copyright terms: Public domain W3C validator