MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addassnq Unicode version

Theorem addassnq 8791
Description: Addition of positive fractions is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addassnq  |-  ( ( A  +Q  B )  +Q  C )  =  ( A  +Q  ( B  +Q  C ) )

Proof of Theorem addassnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addasspi 8728 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( 1st `  B )  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) ) )  +N  ( ( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) )  =  ( ( ( 1st `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  +N  ( ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) ) )
2 ovex 6065 . . . . . . . . . . 11  |-  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  _V
3 ovex 6065 . . . . . . . . . . 11  |-  ( ( 1st `  B )  .N  ( 2nd `  A
) )  e.  _V
4 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  C )  e.  _V
5 mulcompi 8729 . . . . . . . . . . 11  |-  ( x  .N  y )  =  ( y  .N  x
)
6 distrpi 8731 . . . . . . . . . . 11  |-  ( x  .N  ( y  +N  z ) )  =  ( ( x  .N  y )  +N  (
x  .N  z ) )
72, 3, 4, 5, 6caovdir 6240 . . . . . . . . . 10  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C
) )  =  ( ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) )  +N  (
( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) ) )
8 mulasspi 8730 . . . . . . . . . . 11  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) )  =  ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )
98oveq1i 6050 . . . . . . . . . 10  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) )  +N  (
( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) ) )  =  ( ( ( 1st `  A )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  ( 2nd `  C ) ) )
107, 9eqtri 2424 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C
) )  =  ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( 1st `  B )  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) ) )
1110oveq1i 6050 . . . . . . . 8  |-  ( ( ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) )  =  ( ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( 1st `  B )  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) ) )  +N  ( ( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) )
12 ovex 6065 . . . . . . . . . . 11  |-  ( ( 1st `  B )  .N  ( 2nd `  C
) )  e.  _V
13 ovex 6065 . . . . . . . . . . 11  |-  ( ( 1st `  C )  .N  ( 2nd `  B
) )  e.  _V
14 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  A )  e.  _V
1512, 13, 14, 5, 6caovdir 6240 . . . . . . . . . 10  |-  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) )  =  ( ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  .N  ( 2nd `  A
) )  +N  (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  A
) ) )
16 fvex 5701 . . . . . . . . . . . 12  |-  ( 1st `  B )  e.  _V
17 mulasspi 8730 . . . . . . . . . . . 12  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
1816, 4, 14, 5, 17caov32 6233 . . . . . . . . . . 11  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  .N  ( 2nd `  A
) )  =  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) )
19 mulasspi 8730 . . . . . . . . . . . 12  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  A
) )  =  ( ( 1st `  C
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  A
) ) )
20 mulcompi 8729 . . . . . . . . . . . . 13  |-  ( ( 2nd `  B )  .N  ( 2nd `  A
) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  B ) )
2120oveq2i 6051 . . . . . . . . . . . 12  |-  ( ( 1st `  C )  .N  ( ( 2nd `  B )  .N  ( 2nd `  A ) ) )  =  ( ( 1st `  C )  .N  ( ( 2nd `  A )  .N  ( 2nd `  B ) ) )
2219, 21eqtri 2424 . . . . . . . . . . 11  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  A
) )  =  ( ( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) )
2318, 22oveq12i 6052 . . . . . . . . . 10  |-  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  .N  ( 2nd `  A
) )  +N  (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  A
) ) )  =  ( ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) ) )
2415, 23eqtri 2424 . . . . . . . . 9  |-  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) )  =  ( ( ( ( 1st `  B )  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) )
2524oveq2i 6051 . . . . . . . 8  |-  ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) ) )  =  ( ( ( 1st `  A )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) ) )
261, 11, 253eqtr4i 2434 . . . . . . 7  |-  ( ( ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) )  =  ( ( ( 1st `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  +N  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) ) )
27 mulasspi 8730 . . . . . . 7  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )
2826, 27opeq12i 3949 . . . . . 6  |-  <. (
( ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>.  =  <. ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
29 elpqn 8758 . . . . . . . . . 10  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
30293ad2ant1 978 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
31 elpqn 8758 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
32313ad2ant2 979 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
33 addpipq2 8769 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  = 
<. ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
3430, 32, 33syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  +pQ  B )  = 
<. ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
35 relxp 4942 . . . . . . . . 9  |-  Rel  ( N.  X.  N. )
36 elpqn 8758 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
37363ad2ant3 980 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
38 1st2nd 6352 . . . . . . . . 9  |-  ( ( Rel  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
3935, 37, 38sylancr 645 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
4034, 39oveq12d 6058 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +pQ  B
)  +pQ  C )  =  ( <. (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  +pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
41 xp1st 6335 . . . . . . . . . . 11  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
4230, 41syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  A )  e. 
N. )
43 xp2nd 6336 . . . . . . . . . . 11  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
4432, 43syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
45 mulclpi 8726 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
4642, 44, 45syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
47 xp1st 6335 . . . . . . . . . . 11  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
4832, 47syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  B )  e. 
N. )
49 xp2nd 6336 . . . . . . . . . . 11  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
5030, 49syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
51 mulclpi 8726 . . . . . . . . . 10  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  e. 
N. )
5248, 50, 51syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  B
)  .N  ( 2nd `  A ) )  e. 
N. )
53 addclpi 8725 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N.  /\  ( ( 1st `  B )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  e.  N. )
5446, 52, 53syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  e.  N. )
55 mulclpi 8726 . . . . . . . . 9  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
5650, 44, 55syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
57 xp1st 6335 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
5837, 57syl 16 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
59 xp2nd 6336 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
6037, 59syl 16 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
61 addpipq 8770 . . . . . . . 8  |-  ( ( ( ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )  /\  (
( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. ) )  ->  ( <. (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  +pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )  =  <. ( ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
6254, 56, 58, 60, 61syl22anc 1185 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >.  +pQ  <. ( 1st `  C ) ,  ( 2nd `  C
) >. )  =  <. ( ( ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
6340, 62eqtrd 2436 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +pQ  B
)  +pQ  C )  =  <. ( ( ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
64 1st2nd 6352 . . . . . . . . 9  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
6535, 30, 64sylancr 645 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
66 addpipq2 8769 . . . . . . . . 9  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  +pQ  C )  = 
<. ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) >. )
6732, 37, 66syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +pQ  C )  = 
<. ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) >. )
6865, 67oveq12d 6058 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  +pQ  ( B  +pQ  C ) )  =  (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  +pQ  <. (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. ) )
69 mulclpi 8726 . . . . . . . . . 10  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
7048, 60, 69syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
71 mulclpi 8726 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
7258, 44, 71syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
73 addclpi 8725 . . . . . . . . 9  |-  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
7470, 72, 73syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
75 mulclpi 8726 . . . . . . . . 9  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
7644, 60, 75syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
77 addpipq 8770 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N.  /\  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  +pQ  <. (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. )  =  <. ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
7842, 50, 74, 76, 77syl22anc 1185 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  +pQ  <. (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. )  =  <. ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
7968, 78eqtrd 2436 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  +pQ  ( B  +pQ  C ) )  =  <. ( ( ( 1st `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  +N  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  .N  ( 2nd `  A
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
8028, 63, 793eqtr4a 2462 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +pQ  B
)  +pQ  C )  =  ( A  +pQ  ( B  +pQ  C ) ) )
8180fveq2d 5691 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( /Q `  ( ( A 
+pQ  B )  +pQ  C ) )  =  ( /Q `  ( A 
+pQ  ( B  +pQ  C ) ) ) )
82 adderpq 8789 . . . 4  |-  ( ( /Q `  ( A 
+pQ  B ) )  +Q  ( /Q `  C ) )  =  ( /Q `  (
( A  +pQ  B
)  +pQ  C )
)
83 adderpq 8789 . . . 4  |-  ( ( /Q `  A )  +Q  ( /Q `  ( B  +pQ  C ) ) )  =  ( /Q `  ( A 
+pQ  ( B  +pQ  C ) ) )
8481, 82, 833eqtr4g 2461 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( /Q `  ( A  +pQ  B ) )  +Q  ( /Q `  C ) )  =  ( ( /Q `  A )  +Q  ( /Q `  ( B  +pQ  C ) ) ) )
85 addpqnq 8771 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )
86853adant3 977 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  +Q  B )  =  ( /Q `  ( A  +pQ  B ) ) )
87 nqerid 8766 . . . . . 6  |-  ( C  e.  Q.  ->  ( /Q `  C )  =  C )
8887eqcomd 2409 . . . . 5  |-  ( C  e.  Q.  ->  C  =  ( /Q `  C ) )
89883ad2ant3 980 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  =  ( /Q `  C ) )
9086, 89oveq12d 6058 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +Q  B
)  +Q  C )  =  ( ( /Q
`  ( A  +pQ  B ) )  +Q  ( /Q `  C ) ) )
91 nqerid 8766 . . . . . 6  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
9291eqcomd 2409 . . . . 5  |-  ( A  e.  Q.  ->  A  =  ( /Q `  A ) )
93923ad2ant1 978 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  ( /Q `  A ) )
94 addpqnq 8771 . . . . 5  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +Q  C
)  =  ( /Q
`  ( B  +pQ  C ) ) )
95943adant1 975 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +Q  C )  =  ( /Q `  ( B  +pQ  C ) ) )
9693, 95oveq12d 6058 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  +Q  ( B  +Q  C ) )  =  ( ( /Q `  A )  +Q  ( /Q `  ( B  +pQ  C ) ) ) )
9784, 90, 963eqtr4d 2446 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +Q  B
)  +Q  C )  =  ( A  +Q  ( B  +Q  C
) ) )
98 addnqf 8781 . . . 4  |-  +Q  :
( Q.  X.  Q. )
--> Q.
9998fdmi 5555 . . 3  |-  dom  +Q  =  ( Q.  X.  Q. )
100 0nnq 8757 . . 3  |-  -.  (/)  e.  Q.
10199, 100ndmovass 6194 . 2  |-  ( -.  ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  +Q  B )  +Q  C
)  =  ( A  +Q  ( B  +Q  C ) ) )
10297, 101pm2.61i 158 1  |-  ( ( A  +Q  B )  +Q  C )  =  ( A  +Q  ( B  +Q  C ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3777    X. cxp 4835   Rel wrel 4842   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   N.cnpi 8675    +N cpli 8676    .N cmi 8677    +pQ cplpq 8679   Q.cnq 8683   /Qcerq 8685    +Q cplq 8686
This theorem is referenced by:  ltaddnq  8807  addasspr  8855  prlem934  8866  ltexprlem7  8875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-1nq 8749
  Copyright terms: Public domain W3C validator