MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add32d Structured version   Unicode version

Theorem add32d 9584
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1  |-  ( ph  ->  A  e.  CC )
addd.2  |-  ( ph  ->  B  e.  CC )
addd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
add32d  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32d
StepHypRef Expression
1 addd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 add32 9575 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
51, 2, 3, 4syl3anc 1218 1  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756  (class class class)co 6086   CCcc 9272    + caddc 9277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-ltxr 9415
This theorem is referenced by:  nppcan  9623  muladd  9769  fladdz  11662  zesq  11979  abstri  12810  iseraltlem3  13153  sadadd2lem  13647  pythagtriplem1  13875  pythagtriplem12  13885  vdwlem2  14035  vdwlem6  14039  vdwlem8  14041  tchcphlem1  20725  uniioombllem5  21042  heron  22208  dcubic1  22215  mulog2sumlem1  22758  chpdifbndlem1  22777  selberg34r  22795  pntlemr  22826  brbtwn2  23102  axpasch  23138  lgamcvg2  26993  subfacval2  27027  cnapbmcpd  30122  clwwisshclwwlem1  30422
  Copyright terms: Public domain W3C validator