MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add20 Unicode version

Theorem add20 9496
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
add20  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )

Proof of Theorem add20
StepHypRef Expression
1 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  0  <_  A
)
2 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  e.  RR )
3 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  A  e.  RR )
4 addge02 9495 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  B  <_  ( A  +  B ) ) )
52, 3, 4syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( 0  <_  A 
<->  B  <_  ( A  +  B ) ) )
61, 5mpbid 202 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  <_  ( A  +  B )
)
7 simpr 448 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  +  B )  =  0 )
86, 7breqtrd 4196 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  <_  0
)
9 simplrr 738 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  0  <_  B
)
10 0re 9047 . . . . . . . . 9  |-  0  e.  RR
1110a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  0  e.  RR )
122, 11letri3d 9171 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( B  =  0  <->  ( B  <_ 
0  /\  0  <_  B ) ) )
138, 9, 12mpbir2and 889 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  =  0 )
1413oveq2d 6056 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  +  B )  =  ( A  +  0 ) )
153recnd 9070 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  A  e.  CC )
1615addid1d 9222 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  + 
0 )  =  A )
1714, 7, 163eqtr3rd 2445 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  A  =  0 )
1817, 13jca 519 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  =  0  /\  B  =  0 ) )
1918ex 424 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
20 oveq12 6049 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  +  B )  =  ( 0  +  0 ) )
21 00id 9197 . . 3  |-  ( 0  +  0 )  =  0
2220, 21syl6eq 2452 . 2  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  +  B )  =  0 )
2319, 22impbid1 195 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172  (class class class)co 6040   RRcr 8945   0cc0 8946    + caddc 8949    <_ cle 9077
This theorem is referenced by:  add20i  9526  sumsqeq0  11415  4sqlem15  13282  4sqlem16  13283  ang180lem2  20605  mumullem2  20916  2sqlem7  21107
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082
  Copyright terms: Public domain W3C validator