![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acufl | Structured version Visualization version Unicode version |
Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
acufl |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3059 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
2 | 1 | pwex 4599 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
3 | 2 | pwex 4599 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
4 | dfac10 8592 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | biimpi 199 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | syl5eleqr 2546 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | numufl 20978 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | syl 17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 8, 9 | 2thd 248 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | eqrdv 2459 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-rep 4528 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 ax-un 6609 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-nel 2635 df-ral 2753 df-rex 2754 df-reu 2755 df-rmo 2756 df-rab 2757 df-v 3058 df-sbc 3279 df-csb 3375 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-pss 3431 df-nul 3743 df-if 3893 df-pw 3964 df-sn 3980 df-pr 3982 df-tp 3984 df-op 3986 df-uni 4212 df-int 4248 df-iun 4293 df-br 4416 df-opab 4475 df-mpt 4476 df-tr 4511 df-eprel 4763 df-id 4767 df-po 4773 df-so 4774 df-fr 4811 df-se 4812 df-we 4813 df-xp 4858 df-rel 4859 df-cnv 4860 df-co 4861 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-pred 5398 df-ord 5444 df-on 5445 df-lim 5446 df-suc 5447 df-iota 5564 df-fun 5602 df-fn 5603 df-f 5604 df-f1 5605 df-fo 5606 df-f1o 5607 df-fv 5608 df-isom 5609 df-riota 6276 df-ov 6317 df-oprab 6318 df-mpt2 6319 df-rpss 6597 df-om 6719 df-wrecs 7053 df-recs 7115 df-rdg 7153 df-1o 7207 df-oadd 7211 df-er 7388 df-en 7595 df-dom 7596 df-fin 7598 df-fi 7950 df-card 8398 df-ac 8572 df-cda 8623 df-fbas 19015 df-fg 19016 df-fil 20909 df-ufil 20964 df-ufl 20965 |
This theorem is referenced by: ptcmp 21121 dfac21 35968 |
Copyright terms: Public domain | W3C validator |