MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Unicode version

Theorem acsmapd 14297
Description: In an algebraic closure system, if  T is contained in the closure of  S, there is a map  f from  T into the set of finite subsets of  S such that the closure of  U. ran  f contains  T. This is proven by applying acsficl2d 14295 to each element of  T. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1  |-  ( ph  ->  A  e.  (ACS `  X ) )
acsmapd.2  |-  N  =  (mrCls `  A )
acsmapd.3  |-  ( ph  ->  S  C_  X )
acsmapd.4  |-  ( ph  ->  T  C_  ( N `  S ) )
Assertion
Ref Expression
acsmapd  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) )
Distinct variable groups:    T, f    ph, f    S, f    f, N
Allowed substitution hints:    A( f)    X( f)

Proof of Theorem acsmapd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4  |-  ( ph  ->  T  C_  ( N `  S ) )
2 fvex 5555 . . . . 5  |-  ( N `
 S )  e. 
_V
32ssex 4174 . . . 4  |-  ( T 
C_  ( N `  S )  ->  T  e.  _V )
41, 3syl 15 . . 3  |-  ( ph  ->  T  e.  _V )
51sseld 3192 . . . . 5  |-  ( ph  ->  ( x  e.  T  ->  x  e.  ( N `
 S ) ) )
6 acsmapd.1 . . . . . 6  |-  ( ph  ->  A  e.  (ACS `  X ) )
7 acsmapd.2 . . . . . 6  |-  N  =  (mrCls `  A )
8 acsmapd.3 . . . . . 6  |-  ( ph  ->  S  C_  X )
96, 7, 8acsficl2d 14295 . . . . 5  |-  ( ph  ->  ( x  e.  ( N `  S )  <->  E. y  e.  ( ~P S  i^i  Fin )
x  e.  ( N `
 y ) ) )
105, 9sylibd 205 . . . 4  |-  ( ph  ->  ( x  e.  T  ->  E. y  e.  ( ~P S  i^i  Fin ) x  e.  ( N `  y )
) )
1110ralrimiv 2638 . . 3  |-  ( ph  ->  A. x  e.  T  E. y  e.  ( ~P S  i^i  Fin )
x  e.  ( N `
 y ) )
12 fveq2 5541 . . . . 5  |-  ( y  =  ( f `  x )  ->  ( N `  y )  =  ( N `  ( f `  x
) ) )
1312eleq2d 2363 . . . 4  |-  ( y  =  ( f `  x )  ->  (
x  e.  ( N `
 y )  <->  x  e.  ( N `  ( f `
 x ) ) ) )
1413ac6sg 8131 . . 3  |-  ( T  e.  _V  ->  ( A. x  e.  T  E. y  e.  ( ~P S  i^i  Fin )
x  e.  ( N `
 y )  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) ) )
154, 11, 14sylc 56 . 2  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )
16 simprl 732 . . . . 5  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  -> 
f : T --> ( ~P S  i^i  Fin )
)
17 nfv 1609 . . . . . . . 8  |-  F/ x ph
18 nfv 1609 . . . . . . . . 9  |-  F/ x  f : T --> ( ~P S  i^i  Fin )
19 nfra1 2606 . . . . . . . . 9  |-  F/ x A. x  e.  T  x  e.  ( N `  ( f `  x
) )
2018, 19nfan 1783 . . . . . . . 8  |-  F/ x
( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `
 x ) ) )
2117, 20nfan 1783 . . . . . . 7  |-  F/ x
( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )
226ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  A  e.  (ACS `  X ) )
2322acsmred 13574 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  A  e.  (Moore `  X ) )
24 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  f : T
--> ( ~P S  i^i  Fin ) )
25 ffn 5405 . . . . . . . . . . . . . 14  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  f  Fn  T )
2624, 25syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  f  Fn  T )
27 fnfvelrn 5678 . . . . . . . . . . . . 13  |-  ( ( f  Fn  T  /\  x  e.  T )  ->  ( f `  x
)  e.  ran  f
)
2826, 27sylancom 648 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  ( f `  x )  e.  ran  f )
2928snssd 3776 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  { (
f `  x ) }  C_  ran  f )
3029unissd 3867 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  U. { ( f `  x ) }  C_  U. ran  f
)
31 frn 5411 . . . . . . . . . . . . . 14  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  ran  f  C_  ( ~P S  i^i  Fin )
)
3231unissd 3867 . . . . . . . . . . . . 13  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  U. ran  f  C_  U. ( ~P S  i^i  Fin ) )
33 unifpw 7174 . . . . . . . . . . . . 13  |-  U. ( ~P S  i^i  Fin )  =  S
3432, 33syl6sseq 3237 . . . . . . . . . . . 12  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  U. ran  f  C_  S )
3524, 34syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  U. ran  f  C_  S )
368ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  S  C_  X
)
3735, 36sstrd 3202 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  U. ran  f  C_  X )
3823, 7, 30, 37mrcssd 13542 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  ( N `  U. { ( f `
 x ) } )  C_  ( N `  U. ran  f ) )
39 simprr 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  ->  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) )
4039r19.21bi 2654 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  x  e.  ( N `  ( f `
 x ) ) )
41 fvex 5555 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
4241unisn 3859 . . . . . . . . . . 11  |-  U. {
( f `  x
) }  =  ( f `  x )
4342fveq2i 5544 . . . . . . . . . 10  |-  ( N `
 U. { ( f `  x ) } )  =  ( N `  ( f `
 x ) )
4440, 43syl6eleqr 2387 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  x  e.  ( N `  U. {
( f `  x
) } ) )
4538, 44sseldd 3194 . . . . . . . 8  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  x  e.  ( N `  U. ran  f ) )
4645ex 423 . . . . . . 7  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  -> 
( x  e.  T  ->  x  e.  ( N `
 U. ran  f
) ) )
4721, 46alrimi 1757 . . . . . 6  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  ->  A. x ( x  e.  T  ->  x  e.  ( N `  U. ran  f ) ) )
48 dfss2 3182 . . . . . 6  |-  ( T 
C_  ( N `  U. ran  f )  <->  A. x
( x  e.  T  ->  x  e.  ( N `
 U. ran  f
) ) )
4947, 48sylibr 203 . . . . 5  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  ->  T  C_  ( N `  U. ran  f ) )
5016, 49jca 518 . . . 4  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  -> 
( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f
) ) )
5150ex 423 . . 3  |-  ( ph  ->  ( ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) )  ->  (
f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) ) )
5251eximdv 1612 . 2  |-  ( ph  ->  ( E. f ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) )  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) ) )
5315, 52mpd 14 1  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843   ran crn 4706    Fn wfn 5266   -->wf 5267   ` cfv 5271   Fincfn 6879  mrClscmrc 13501  ACScacs 13503
This theorem is referenced by:  acsmap2d  14298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358  ax-ac2 8105  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-r1 7452  df-rank 7453  df-card 7588  df-ac 7759  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-tset 13243  df-ple 13244  df-ocomp 13245  df-mre 13504  df-mrc 13505  df-acs 13507  df-preset 14078  df-drs 14079  df-poset 14096  df-ipo 14271
  Copyright terms: Public domain W3C validator