MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Structured version   Unicode version

Theorem acsmapd 15786
Description: In an algebraic closure system, if  T is contained in the closure of  S, there is a map  f from  T into the set of finite subsets of  S such that the closure of  U. ran  f contains  T. This is proven by applying acsficl2d 15784 to each element of  T. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1  |-  ( ph  ->  A  e.  (ACS `  X ) )
acsmapd.2  |-  N  =  (mrCls `  A )
acsmapd.3  |-  ( ph  ->  S  C_  X )
acsmapd.4  |-  ( ph  ->  T  C_  ( N `  S ) )
Assertion
Ref Expression
acsmapd  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) )
Distinct variable groups:    T, f    ph, f    S, f    f, N
Allowed substitution hints:    A( f)    X( f)

Proof of Theorem acsmapd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4  |-  ( ph  ->  T  C_  ( N `  S ) )
2 fvex 5866 . . . . 5  |-  ( N `
 S )  e. 
_V
32ssex 4581 . . . 4  |-  ( T 
C_  ( N `  S )  ->  T  e.  _V )
41, 3syl 16 . . 3  |-  ( ph  ->  T  e.  _V )
51sseld 3488 . . . . 5  |-  ( ph  ->  ( x  e.  T  ->  x  e.  ( N `
 S ) ) )
6 acsmapd.1 . . . . . 6  |-  ( ph  ->  A  e.  (ACS `  X ) )
7 acsmapd.2 . . . . . 6  |-  N  =  (mrCls `  A )
8 acsmapd.3 . . . . . 6  |-  ( ph  ->  S  C_  X )
96, 7, 8acsficl2d 15784 . . . . 5  |-  ( ph  ->  ( x  e.  ( N `  S )  <->  E. y  e.  ( ~P S  i^i  Fin )
x  e.  ( N `
 y ) ) )
105, 9sylibd 214 . . . 4  |-  ( ph  ->  ( x  e.  T  ->  E. y  e.  ( ~P S  i^i  Fin ) x  e.  ( N `  y )
) )
1110ralrimiv 2855 . . 3  |-  ( ph  ->  A. x  e.  T  E. y  e.  ( ~P S  i^i  Fin )
x  e.  ( N `
 y ) )
12 fveq2 5856 . . . . 5  |-  ( y  =  ( f `  x )  ->  ( N `  y )  =  ( N `  ( f `  x
) ) )
1312eleq2d 2513 . . . 4  |-  ( y  =  ( f `  x )  ->  (
x  e.  ( N `
 y )  <->  x  e.  ( N `  ( f `
 x ) ) ) )
1413ac6sg 8871 . . 3  |-  ( T  e.  _V  ->  ( A. x  e.  T  E. y  e.  ( ~P S  i^i  Fin )
x  e.  ( N `
 y )  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) ) )
154, 11, 14sylc 60 . 2  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )
16 simprl 756 . . . . 5  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  -> 
f : T --> ( ~P S  i^i  Fin )
)
17 nfv 1694 . . . . . . . 8  |-  F/ x ph
18 nfv 1694 . . . . . . . . 9  |-  F/ x  f : T --> ( ~P S  i^i  Fin )
19 nfra1 2824 . . . . . . . . 9  |-  F/ x A. x  e.  T  x  e.  ( N `  ( f `  x
) )
2018, 19nfan 1914 . . . . . . . 8  |-  F/ x
( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `
 x ) ) )
2117, 20nfan 1914 . . . . . . 7  |-  F/ x
( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )
226ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  A  e.  (ACS `  X ) )
2322acsmred 15034 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  A  e.  (Moore `  X ) )
24 simplrl 761 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  f : T
--> ( ~P S  i^i  Fin ) )
25 ffn 5721 . . . . . . . . . . . . . 14  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  f  Fn  T )
2624, 25syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  f  Fn  T )
27 fnfvelrn 6013 . . . . . . . . . . . . 13  |-  ( ( f  Fn  T  /\  x  e.  T )  ->  ( f `  x
)  e.  ran  f
)
2826, 27sylancom 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  ( f `  x )  e.  ran  f )
2928snssd 4160 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  { (
f `  x ) }  C_  ran  f )
3029unissd 4258 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  U. { ( f `  x ) }  C_  U. ran  f
)
31 frn 5727 . . . . . . . . . . . . . 14  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  ran  f  C_  ( ~P S  i^i  Fin )
)
3231unissd 4258 . . . . . . . . . . . . 13  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  U. ran  f  C_  U. ( ~P S  i^i  Fin ) )
33 unifpw 7825 . . . . . . . . . . . . 13  |-  U. ( ~P S  i^i  Fin )  =  S
3432, 33syl6sseq 3535 . . . . . . . . . . . 12  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  U. ran  f  C_  S )
3524, 34syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  U. ran  f  C_  S )
368ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  S  C_  X
)
3735, 36sstrd 3499 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  U. ran  f  C_  X )
3823, 7, 30, 37mrcssd 15002 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  ( N `  U. { ( f `
 x ) } )  C_  ( N `  U. ran  f ) )
39 simprr 757 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  ->  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) )
4039r19.21bi 2812 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  x  e.  ( N `  ( f `
 x ) ) )
41 fvex 5866 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
4241unisn 4249 . . . . . . . . . . 11  |-  U. {
( f `  x
) }  =  ( f `  x )
4342fveq2i 5859 . . . . . . . . . 10  |-  ( N `
 U. { ( f `  x ) } )  =  ( N `  ( f `
 x ) )
4440, 43syl6eleqr 2542 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  x  e.  ( N `  U. {
( f `  x
) } ) )
4538, 44sseldd 3490 . . . . . . . 8  |-  ( ( ( ph  /\  (
f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) ) )  /\  x  e.  T
)  ->  x  e.  ( N `  U. ran  f ) )
4645ex 434 . . . . . . 7  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  -> 
( x  e.  T  ->  x  e.  ( N `
 U. ran  f
) ) )
4721, 46alrimi 1863 . . . . . 6  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  ->  A. x ( x  e.  T  ->  x  e.  ( N `  U. ran  f ) ) )
48 dfss2 3478 . . . . . 6  |-  ( T 
C_  ( N `  U. ran  f )  <->  A. x
( x  e.  T  ->  x  e.  ( N `
 U. ran  f
) ) )
4947, 48sylibr 212 . . . . 5  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  ->  T  C_  ( N `  U. ran  f ) )
5016, 49jca 532 . . . 4  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) ) )  -> 
( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f
) ) )
5150ex 434 . . 3  |-  ( ph  ->  ( ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  (
f `  x )
) )  ->  (
f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) ) )
5251eximdv 1697 . 2  |-  ( ph  ->  ( E. f ( f : T --> ( ~P S  i^i  Fin )  /\  A. x  e.  T  x  e.  ( N `  ( f `  x
) ) )  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) ) )
5315, 52mpd 15 1  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804   A.wral 2793   E.wrex 2794   _Vcvv 3095    i^i cin 3460    C_ wss 3461   ~Pcpw 3997   {csn 4014   U.cuni 4234   ran crn 4990    Fn wfn 5573   -->wf 5574   ` cfv 5578   Fincfn 7518  mrClscmrc 14961  ACScacs 14963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-reg 8021  ax-inf2 8061  ax-ac2 8846  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-r1 8185  df-rank 8186  df-card 8323  df-ac 8500  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10986  df-uz 11092  df-fz 11683  df-struct 14615  df-ndx 14616  df-slot 14617  df-base 14618  df-tset 14697  df-ple 14698  df-ocomp 14699  df-mre 14964  df-mrc 14965  df-acs 14967  df-preset 15535  df-drs 15536  df-poset 15553  df-ipo 15760
This theorem is referenced by:  acsmap2d  15787
  Copyright terms: Public domain W3C validator