Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acsfn1p Structured version   Unicode version

Theorem acsfn1p 30781
Description: Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
acsfn1p  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Distinct variable groups:    a, b, V    E, a    X, a, b    Y, a, b
Allowed substitution hint:    E( b)

Proof of Theorem acsfn1p
StepHypRef Expression
1 riinrab 4401 . . 3  |-  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y
) ( { b }  C_  a  ->  E  e.  a ) }
2 elpwi 4019 . . . . . . . 8  |-  ( a  e.  ~P X  -> 
a  C_  X )
3 ssrin 3723 . . . . . . . 8  |-  ( a 
C_  X  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
42, 3syl 16 . . . . . . 7  |-  ( a  e.  ~P X  -> 
( a  i^i  Y
)  C_  ( X  i^i  Y ) )
54adantl 466 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
6 ralss 3566 . . . . . 6  |-  ( ( a  i^i  Y ) 
C_  ( X  i^i  Y )  ->  ( A. b  e.  ( a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a ) ) )
75, 6syl 16 . . . . 5  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  (
a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y
) ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
8 inss2 3719 . . . . . . . . . 10  |-  ( X  i^i  Y )  C_  Y
98sseli 3500 . . . . . . . . 9  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  Y )
109biantrud 507 . . . . . . . 8  |-  ( b  e.  ( X  i^i  Y )  ->  ( b  e.  a  <->  ( b  e.  a  /\  b  e.  Y ) ) )
11 vex 3116 . . . . . . . . . 10  |-  b  e. 
_V
1211snss 4151 . . . . . . . . 9  |-  ( b  e.  a  <->  { b }  C_  a )
1312bicomi 202 . . . . . . . 8  |-  ( { b }  C_  a  <->  b  e.  a )
14 elin 3687 . . . . . . . 8  |-  ( b  e.  ( a  i^i 
Y )  <->  ( b  e.  a  /\  b  e.  Y ) )
1510, 13, 143bitr4g 288 . . . . . . 7  |-  ( b  e.  ( X  i^i  Y )  ->  ( {
b }  C_  a  <->  b  e.  ( a  i^i 
Y ) ) )
1615imbi1d 317 . . . . . 6  |-  ( b  e.  ( X  i^i  Y )  ->  ( ( { b }  C_  a  ->  E  e.  a )  <->  ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
1716ralbiia 2894 . . . . 5  |-  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a )
)
187, 17syl6rbbr 264 . . . 4  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( a  i^i  Y ) E  e.  a ) )
1918rabbidva 3104 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a ) }  =  {
a  e.  ~P X  |  A. b  e.  ( a  i^i  Y ) E  e.  a } )
201, 19syl5eq 2520 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( a  i^i  Y
) E  e.  a } )
21 mreacs 14913 . . . 4  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
2221adantr 465 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
23 ssralv 3564 . . . . . 6  |-  ( ( X  i^i  Y ) 
C_  Y  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) E  e.  X ) )
248, 23ax-mp 5 . . . . 5  |-  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y
) E  e.  X
)
25 simpll 753 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  X  e.  V )
26 simpr 461 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  E  e.  X )
27 inss1 3718 . . . . . . . . . . 11  |-  ( X  i^i  Y )  C_  X
2827sseli 3500 . . . . . . . . . 10  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  X )
2928ad2antlr 726 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  b  e.  X )
3029snssd 4172 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  C_  X )
31 snfi 7596 . . . . . . . . 9  |-  { b }  e.  Fin
3231a1i 11 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  e.  Fin )
33 acsfn 14914 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  E  e.  X
)  /\  ( {
b }  C_  X  /\  { b }  e.  Fin ) )  ->  { a  e.  ~P X  | 
( { b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
3425, 26, 30, 32, 33syl22anc 1229 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
3534ex 434 . . . . . 6  |-  ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  -> 
( E  e.  X  ->  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
3635ralimdva 2872 . . . . 5  |-  ( X  e.  V  ->  ( A. b  e.  ( X  i^i  Y ) E  e.  X  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) ) )
3724, 36syl5 32 . . . 4  |-  ( X  e.  V  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) ) )
3837imp 429 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
39 mreriincl 14853 . . 3  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) } )  e.  (ACS
`  X ) )
4022, 38, 39syl2anc 661 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X )
)
4120, 40eqeltrrd 2556 1  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   A.wral 2814   {crab 2818    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   {csn 4027   |^|_ciin 4326   ` cfv 5588   Fincfn 7516  Moorecmre 14837  ACScacs 14840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-1o 7130  df-en 7517  df-fin 7520  df-mre 14841  df-mrc 14842  df-acs 14844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator