MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1 Structured version   Unicode version

Theorem acsfn1 14597
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1  |-  ( ( X  e.  V  /\  A. b  e.  X  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  a  E  e.  a }  e.  (ACS `  X )
)
Distinct variable groups:    a, b, V    X, a, b    E, a
Allowed substitution hint:    E( b)

Proof of Theorem acsfn1
StepHypRef Expression
1 elpwi 3867 . . . . . 6  |-  ( a  e.  ~P X  -> 
a  C_  X )
2 ralss 3416 . . . . . 6  |-  ( a 
C_  X  ->  ( A. b  e.  a  E  e.  a  <->  A. b  e.  X  ( b  e.  a  ->  E  e.  a ) ) )
31, 2syl 16 . . . . 5  |-  ( a  e.  ~P X  -> 
( A. b  e.  a  E  e.  a  <->  A. b  e.  X  ( b  e.  a  ->  E  e.  a ) ) )
4 vex 2973 . . . . . . . 8  |-  b  e. 
_V
54snss 3997 . . . . . . 7  |-  ( b  e.  a  <->  { b }  C_  a )
65imbi1i 325 . . . . . 6  |-  ( ( b  e.  a  ->  E  e.  a )  <->  ( { b }  C_  a  ->  E  e.  a ) )
76ralbii 2737 . . . . 5  |-  ( A. b  e.  X  (
b  e.  a  ->  E  e.  a )  <->  A. b  e.  X  ( { b }  C_  a  ->  E  e.  a ) )
83, 7syl6bb 261 . . . 4  |-  ( a  e.  ~P X  -> 
( A. b  e.  a  E  e.  a  <->  A. b  e.  X  ( { b }  C_  a  ->  E  e.  a ) ) )
98rabbiia 2959 . . 3  |-  { a  e.  ~P X  |  A. b  e.  a  E  e.  a }  =  { a  e.  ~P X  |  A. b  e.  X  ( {
b }  C_  a  ->  E  e.  a ) }
10 riinrab 4244 . . 3  |-  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  X  ( {
b }  C_  a  ->  E  e.  a ) }
119, 10eqtr4i 2464 . 2  |-  { a  e.  ~P X  |  A. b  e.  a  E  e.  a }  =  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) } )
12 mreacs 14594 . . . 4  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
1312adantr 465 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  X  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
14 simpll 753 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  E  e.  X )  ->  X  e.  V )
15 simpr 461 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  E  e.  X )  ->  E  e.  X )
16 snssi 4015 . . . . . . . 8  |-  ( b  e.  X  ->  { b }  C_  X )
1716ad2antlr 726 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  E  e.  X )  ->  { b }  C_  X )
18 snfi 7388 . . . . . . . 8  |-  { b }  e.  Fin
1918a1i 11 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  E  e.  X )  ->  { b }  e.  Fin )
20 acsfn 14595 . . . . . . 7  |-  ( ( ( X  e.  V  /\  E  e.  X
)  /\  ( {
b }  C_  X  /\  { b }  e.  Fin ) )  ->  { a  e.  ~P X  | 
( { b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
2114, 15, 17, 19, 20syl22anc 1219 . . . . . 6  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  E  e.  X )  ->  { a  e.  ~P X  | 
( { b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
2221ex 434 . . . . 5  |-  ( ( X  e.  V  /\  b  e.  X )  ->  ( E  e.  X  ->  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
2322ralimdva 2792 . . . 4  |-  ( X  e.  V  ->  ( A. b  e.  X  E  e.  X  ->  A. b  e.  X  {
a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) ) )
2423imp 429 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  X  E  e.  X )  ->  A. b  e.  X  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
25 mreriincl 14534 . . 3  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. b  e.  X  { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )  ->  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) } )  e.  (ACS
`  X ) )
2613, 24, 25syl2anc 661 . 2  |-  ( ( X  e.  V  /\  A. b  e.  X  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X )
)
2711, 26syl5eqel 2525 1  |-  ( ( X  e.  V  /\  A. b  e.  X  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  a  E  e.  a }  e.  (ACS `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   A.wral 2713   {crab 2717    i^i cin 3325    C_ wss 3326   ~Pcpw 3858   {csn 3875   |^|_ciin 4170   ` cfv 5416   Fincfn 7308  Moorecmre 14518  ACScacs 14521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-om 6475  df-1o 6918  df-en 7309  df-fin 7312  df-mre 14522  df-mrc 14523  df-acs 14525
This theorem is referenced by:  acsfn1c  14598  subgacs  15714  sdrgacs  29555
  Copyright terms: Public domain W3C validator