MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Structured version   Unicode version

Theorem acsfiindd 15339
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1  |-  ( ph  ->  A  e.  (ACS `  X ) )
acsfiindd.2  |-  N  =  (mrCls `  A )
acsfiindd.3  |-  I  =  (mrInd `  A )
acsfiindd.4  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
acsfiindd  |-  ( ph  ->  ( S  e.  I  <->  ( ~P S  i^i  Fin )  C_  I ) )

Proof of Theorem acsfiindd
Dummy variables  x  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7  |-  ( ph  ->  A  e.  (ACS `  X ) )
21acsmred 14586 . . . . . 6  |-  ( ph  ->  A  e.  (Moore `  X ) )
32ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  A  e.  (Moore `  X )
)
4 acsfiindd.2 . . . . 5  |-  N  =  (mrCls `  A )
5 acsfiindd.3 . . . . 5  |-  I  =  (mrInd `  A )
6 simplr 754 . . . . 5  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  S  e.  I )
7 inss1 3565 . . . . . . 7  |-  ( ~P S  i^i  Fin )  C_ 
~P S
8 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  e.  ( ~P S  i^i  Fin ) )
97, 8sseldi 3349 . . . . . 6  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  e.  ~P S )
109elpwid 3865 . . . . 5  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  C_  S )
113, 4, 5, 6, 10mrissmrid 14571 . . . 4  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  e.  I )
1211ralrimiva 2794 . . 3  |-  ( (
ph  /\  S  e.  I )  ->  A. s  e.  ( ~P S  i^i  Fin ) s  e.  I
)
13 dfss3 3341 . . 3  |-  ( ( ~P S  i^i  Fin )  C_  I  <->  A. s  e.  ( ~P S  i^i  Fin ) s  e.  I
)
1412, 13sylibr 212 . 2  |-  ( (
ph  /\  S  e.  I )  ->  ( ~P S  i^i  Fin )  C_  I )
152adantr 465 . . 3  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  A  e.  (Moore `  X )
)
16 acsfiindd.4 . . . 4  |-  ( ph  ->  S  C_  X )
1716adantr 465 . . 3  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  S  C_  X )
18 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )
19 elfpw 7605 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( ~P ( S  \  { x }
)  i^i  Fin )  <->  ( t  C_  ( S  \  { x } )  /\  t  e.  Fin ) )
2018, 19sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  C_  ( S  \  {
x } )  /\  t  e.  Fin )
)
2120simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  C_  ( S  \  { x } ) )
2221difss2d 3481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  C_  S )
23 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  x  e.  S )
2423snssd 4013 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  { x }  C_  S )
2522, 24unssd 3527 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  u.  { x } ) 
C_  S )
2620simprd 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  e.  Fin )
27 snfi 7382 . . . . . . . . . . . 12  |-  { x }  e.  Fin
28 unfi 7571 . . . . . . . . . . . 12  |-  ( ( t  e.  Fin  /\  { x }  e.  Fin )  ->  ( t  u. 
{ x } )  e.  Fin )
2926, 27, 28sylancl 662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  u.  { x } )  e.  Fin )
30 elfpw 7605 . . . . . . . . . . 11  |-  ( ( t  u.  { x } )  e.  ( ~P S  i^i  Fin ) 
<->  ( ( t  u. 
{ x } ) 
C_  S  /\  (
t  u.  { x } )  e.  Fin ) )
3125, 29, 30sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  u.  { x } )  e.  ( ~P S  i^i  Fin ) )
322ad4antr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  A  e.  (Moore `  X ) )
33 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  s  e.  I )
34 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  x  e.  S )
35 snidg 3898 . . . . . . . . . . . . . . . 16  |-  ( x  e.  S  ->  x  e.  { x } )
36 elun2 3519 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { x }  ->  x  e.  ( t  u.  { x }
) )
3734, 35, 363syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  x  e.  ( t  u.  {
x } ) )
38 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  s  =  ( t  u.  {
x } ) )
3937, 38eleqtrrd 2515 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  x  e.  s )
4039adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  x  e.  s )
414, 5, 32, 33, 40ismri2dad 14567 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
422ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  A  e.  (Moore `  X ) )
4321adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  t  C_  ( S  \  { x } ) )
44 neldifsnd 3998 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  -.  x  e.  ( S  \  {
x } ) )
4543, 44ssneldd 3354 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  -.  x  e.  t )
46 difsnb 4010 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  t  <->  ( t  \  { x } )  =  t )
4745, 46sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  \  { x } )  =  t )
48 ssun1 3514 . . . . . . . . . . . . . . . . . 18  |-  t  C_  ( t  u.  {
x } )
4948, 38syl5sseqr 3400 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  t  C_  s )
5049ssdifd 3487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  \  { x } ) 
C_  ( s  \  { x } ) )
5147, 50eqsstr3d 3386 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  t  C_  ( s  \  {
x } ) )
5225adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  u.  { x } ) 
C_  S )
5316ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  S  C_  X
)
5452, 53sstrd 3361 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  u.  { x } ) 
C_  X )
5538, 54eqsstrd 3385 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  s  C_  X )
5655ssdifssd 3489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( s  \  { x } ) 
C_  X )
5742, 4, 51, 56mrcssd 14554 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( N `  t )  C_  ( N `  ( s  \  { x } ) ) )
5857sseld 3350 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( x  e.  ( N `  t
)  ->  x  e.  ( N `  ( s 
\  { x }
) ) ) )
5958adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  ( x  e.  ( N `  t )  ->  x  e.  ( N `  ( s 
\  { x }
) ) ) )
6041, 59mtod 177 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  -.  x  e.  ( N `  t ) )
6160ex 434 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( s  e.  I  ->  -.  x  e.  ( N `  t
) ) )
6231, 61rspcimdv 3069 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( A. s  e.  ( ~P S  i^i  Fin ) s  e.  I  ->  -.  x  e.  ( N `  t ) ) )
6313, 62syl5bi 217 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( ( ~P S  i^i  Fin )  C_  I  ->  -.  x  e.  ( N `  t
) ) )
6463impancom 440 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  (
t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin )  ->  -.  x  e.  ( N `  t ) ) )
6564ralrimiv 2793 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  A. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )  -.  x  e.  ( N `  t )
)
6616ssdifssd 3489 . . . . . . . . . 10  |-  ( ph  ->  ( S  \  {
x } )  C_  X )
671, 4, 66acsficl2d 15338 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( N `  ( S 
\  { x }
) )  <->  E. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
x  e.  ( N `
 t ) ) )
6867notbid 294 . . . . . . . 8  |-  ( ph  ->  ( -.  x  e.  ( N `  ( S  \  { x }
) )  <->  -.  E. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
x  e.  ( N `
 t ) ) )
69 ralnex 2720 . . . . . . . 8  |-  ( A. t  e.  ( ~P ( S  \  { x } )  i^i  Fin )  -.  x  e.  ( N `  t )  <->  -.  E. t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) x  e.  ( N `  t ) )
7068, 69syl6bbr 263 . . . . . . 7  |-  ( ph  ->  ( -.  x  e.  ( N `  ( S  \  { x }
) )  <->  A. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )  -.  x  e.  ( N `  t )
) )
7170ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  ( -.  x  e.  ( N `  ( S  \  { x } ) )  <->  A. t  e.  ( ~P ( S  \  { x } )  i^i  Fin )  -.  x  e.  ( N `
 t ) ) )
7265, 71mpbird 232 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  -.  x  e.  ( N `  ( S  \  {
x } ) ) )
7372an32s 802 . . . 4  |-  ( ( ( ph  /\  ( ~P S  i^i  Fin )  C_  I )  /\  x  e.  S )  ->  -.  x  e.  ( N `  ( S  \  {
x } ) ) )
7473ralrimiva 2794 . . 3  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) ) )
754, 5, 15, 17, 74ismri2dd 14564 . 2  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  S  e.  I )
7614, 75impbida 828 1  |-  ( ph  ->  ( S  e.  I  <->  ( ~P S  i^i  Fin )  C_  I ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711    \ cdif 3320    u. cun 3321    i^i cin 3322    C_ wss 3323   ~Pcpw 3855   {csn 3872   ` cfv 5413   Fincfn 7302  Moorecmre 14512  mrClscmrc 14513  mrIndcmri 14514  ACScacs 14515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-fz 11430  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-tset 14249  df-ple 14250  df-ocomp 14251  df-mre 14516  df-mrc 14517  df-mri 14518  df-acs 14519  df-preset 15090  df-drs 15091  df-poset 15108  df-ipo 15314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator