MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrscl Structured version   Unicode version

Theorem acsdrscl 15674
Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
acsdrscl  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X  /\  (toInc `  Y )  e. Dirset )  ->  ( F `  U. Y )  =  U. ( F " Y ) )

Proof of Theorem acsdrscl
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5898 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  X  e.  dom ACS )
2 pwexg 4637 . . . . 5  |-  ( X  e.  dom ACS  ->  ~P X  e.  _V )
3 elpw2g 4616 . . . . 5  |-  ( ~P X  e.  _V  ->  ( Y  e.  ~P ~P X 
<->  Y  C_  ~P X
) )
41, 2, 33syl 20 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( Y  e.  ~P ~P X  <->  Y  C_  ~P X ) )
54biimpar 485 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  ->  Y  e.  ~P ~P X )
6 isacs3lem 15670 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
7 acsdrscl.f . . . . . . 7  |-  F  =  (mrCls `  C )
87isacs4lem 15672 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  C ) )  -> 
( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) ) )
96, 8syl 16 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) ) )
109simprd 463 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t )  =  U. ( F " t ) ) )
1110adantr 465 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )
12 fveq2 5872 . . . . . 6  |-  ( t  =  Y  ->  (toInc `  t )  =  (toInc `  Y ) )
1312eleq1d 2536 . . . . 5  |-  ( t  =  Y  ->  (
(toInc `  t )  e. Dirset  <-> 
(toInc `  Y )  e. Dirset ) )
14 unieq 4259 . . . . . . 7  |-  ( t  =  Y  ->  U. t  =  U. Y )
1514fveq2d 5876 . . . . . 6  |-  ( t  =  Y  ->  ( F `  U. t )  =  ( F `  U. Y ) )
16 imaeq2 5339 . . . . . . 7  |-  ( t  =  Y  ->  ( F " t )  =  ( F " Y
) )
1716unieqd 4261 . . . . . 6  |-  ( t  =  Y  ->  U. ( F " t )  = 
U. ( F " Y ) )
1815, 17eqeq12d 2489 . . . . 5  |-  ( t  =  Y  ->  (
( F `  U. t )  =  U. ( F " t )  <-> 
( F `  U. Y )  =  U. ( F " Y ) ) )
1913, 18imbi12d 320 . . . 4  |-  ( t  =  Y  ->  (
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) )  <-> 
( (toInc `  Y
)  e. Dirset  ->  ( F `
 U. Y )  =  U. ( F
" Y ) ) ) )
2019rspcva 3217 . . 3  |-  ( ( Y  e.  ~P ~P X  /\  A. t  e. 
~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )  ->  ( (toInc `  Y )  e. Dirset  ->  ( F `  U. Y
)  =  U. ( F " Y ) ) )
215, 11, 20syl2anc 661 . 2  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  -> 
( (toInc `  Y
)  e. Dirset  ->  ( F `
 U. Y )  =  U. ( F
" Y ) ) )
22213impia 1193 1  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X  /\  (toInc `  Y )  e. Dirset )  ->  ( F `  U. Y )  =  U. ( F " Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    C_ wss 3481   ~Pcpw 4016   U.cuni 4251   dom cdm 5005   "cima 5008   ` cfv 5594  Moorecmre 14854  mrClscmrc 14855  ACScacs 14857  Dirsetcdrs 15431  toInccipo 15655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-tset 14591  df-ple 14592  df-ocomp 14593  df-mre 14858  df-mrc 14859  df-acs 14861  df-preset 15432  df-drs 15433  df-poset 15450  df-ipo 15656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator