Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongtr Structured version   Unicode version

Theorem acongtr 29321
Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongtr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  (
( A  ||  ( B  -  C )  \/  A  ||  ( B  -  -u C ) )  /\  ( A  ||  ( C  -  D
)  \/  A  ||  ( C  -  -u D
) ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )

Proof of Theorem acongtr
StepHypRef Expression
1 congtr 29308 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D
) ) )  ->  A  ||  ( B  -  D ) )
213expa 1187 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D ) ) )  ->  A  ||  ( B  -  D )
)
32orcd 392 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
43ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
5 simpll 753 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
6 znegcl 10680 . . . . . . . 8  |-  ( C  e.  ZZ  ->  -u C  e.  ZZ )
7 znegcl 10680 . . . . . . . 8  |-  ( D  e.  ZZ  ->  -u D  e.  ZZ )
86, 7anim12i 566 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  e.  ZZ  /\  -u D  e.  ZZ ) )
98ad2antlr 726 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( -u C  e.  ZZ  /\  -u D  e.  ZZ ) )
10 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  e.  ZZ )
11 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  C  e.  ZZ )
12 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  D  e.  ZZ )
13 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  ||  ( C  -  D ) )
14 congsym 29311 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  A  ||  ( C  -  D
) ) )  ->  A  ||  ( D  -  C ) )
1510, 11, 12, 13, 14syl22anc 1219 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  ||  ( D  -  C ) )
1615ex 434 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  D )  ->  A  ||  ( D  -  C ) ) )
17 zcn 10651 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  C  e.  CC )
1817adantr 465 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  C  e.  CC )
19 zcn 10651 . . . . . . . . . . . . . 14  |-  ( D  e.  ZZ  ->  D  e.  CC )
2019adantl 466 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  D  e.  CC )
2118, 20neg2subd 9736 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  -  -u D )  =  ( D  -  C ) )
2221adantl 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( -u C  -  -u D
)  =  ( D  -  C ) )
2322eqcomd 2448 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( D  -  C
)  =  ( -u C  -  -u D ) )
2423breq2d 4304 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( D  -  C )  <->  A 
||  ( -u C  -  -u D ) ) )
2516, 24sylibd 214 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  D )  ->  A  ||  ( -u C  -  -u D ) ) )
2625anim2d 565 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  -u D
) ) ) )
2726imp 429 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  -u D
) ) )
28 congtr 29308 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -u C  e.  ZZ  /\  -u D  e.  ZZ )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( -u C  -  -u D ) ) )  ->  A  ||  ( B  -  -u D ) )
295, 9, 27, 28syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  A  ||  ( B  -  -u D ) )
3029olcd 393 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
3130ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
32 simpll 753 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
337anim2i 569 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  e.  ZZ  /\  -u D  e.  ZZ ) )
3433ad2antlr 726 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( C  e.  ZZ  /\  -u D  e.  ZZ ) )
35 simpr 461 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  -u D ) ) )
36 congtr 29308 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  -u D  e.  ZZ )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D
) ) )  ->  A  ||  ( B  -  -u D ) )
3732, 34, 35, 36syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  A  ||  ( B  -  -u D ) )
3837olcd 393 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
3938ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
40 simpll 753 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
416anim1i 568 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  e.  ZZ  /\  D  e.  ZZ ) )
4241ad2antlr 726 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( -u C  e.  ZZ  /\  D  e.  ZZ ) )
43 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ )  ->  A  e.  ZZ )
44 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  ZZ )
4543, 44anim12i 566 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  D  e.  ZZ )  /\  ( B  e.  ZZ  /\  C  e.  ZZ ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
4645an42s 823 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
4746adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
487adantl 466 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u D  e.  ZZ )
4948ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  -u D  e.  ZZ )
50 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  A  ||  ( C  -  -u D ) )
51 congsym 29311 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ )  /\  ( -u D  e.  ZZ  /\  A  ||  ( C  -  -u D
) ) )  ->  A  ||  ( -u D  -  C ) )
5247, 49, 50, 51syl12anc 1216 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  A  ||  ( -u D  -  C ) )
5352ex 434 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  -u D )  ->  A  ||  ( -u D  -  C ) ) )
5418negnegd 9710 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u -u C  =  C )
5554oveq2d 6107 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  -u -u C )  =  (
-u D  -  C
) )
56 zcn 10651 . . . . . . . . . . . . . . 15  |-  ( -u C  e.  ZZ  ->  -u C  e.  CC )
5756adantr 465 . . . . . . . . . . . . . 14  |-  ( (
-u C  e.  ZZ  /\  -u D  e.  ZZ )  ->  -u C  e.  CC )
588, 57syl 16 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u C  e.  CC )
5920, 58neg2subd 9736 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  -u -u C )  =  (
-u C  -  D
) )
6055, 59eqtr3d 2477 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  C )  =  (
-u C  -  D
) )
6160adantl 466 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( -u D  -  C
)  =  ( -u C  -  D )
)
6261breq2d 4304 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( -u D  -  C )  <-> 
A  ||  ( -u C  -  D ) ) )
6353, 62sylibd 214 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  -u D )  ->  A  ||  ( -u C  -  D ) ) )
6463anim2d 565 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  D ) ) ) )
6564imp 429 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  D ) ) )
66 congtr 29308 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -u C  e.  ZZ  /\  D  e.  ZZ )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( -u C  -  D ) ) )  ->  A  ||  ( B  -  D )
)
6740, 42, 65, 66syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  A  ||  ( B  -  D )
)
6867orcd 392 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
6968ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
704, 31, 39, 69ccased 938 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A 
||  ( B  -  C )  \/  A  ||  ( B  -  -u C
) )  /\  ( A  ||  ( C  -  D )  \/  A  ||  ( C  -  -u D
) ) )  -> 
( A  ||  ( B  -  D )  \/  A  ||  ( B  -  -u D ) ) ) )
71703impia 1184 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  (
( A  ||  ( B  -  C )  \/  A  ||  ( B  -  -u C ) )  /\  ( A  ||  ( C  -  D
)  \/  A  ||  ( C  -  -u D
) ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4292  (class class class)co 6091   CCcc 9280    - cmin 9595   -ucneg 9596   ZZcz 10646    || cdivides 13535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-dvds 13536
This theorem is referenced by:  jm2.25lem1  29347  jm2.26  29351  jm2.27a  29354
  Copyright terms: Public domain W3C validator