Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongtr Structured version   Unicode version

Theorem acongtr 29230
Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongtr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  (
( A  ||  ( B  -  C )  \/  A  ||  ( B  -  -u C ) )  /\  ( A  ||  ( C  -  D
)  \/  A  ||  ( C  -  -u D
) ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )

Proof of Theorem acongtr
StepHypRef Expression
1 congtr 29217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D
) ) )  ->  A  ||  ( B  -  D ) )
213expa 1182 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D ) ) )  ->  A  ||  ( B  -  D )
)
32orcd 392 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
43ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
5 simpll 748 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
6 znegcl 10676 . . . . . . . 8  |-  ( C  e.  ZZ  ->  -u C  e.  ZZ )
7 znegcl 10676 . . . . . . . 8  |-  ( D  e.  ZZ  ->  -u D  e.  ZZ )
86, 7anim12i 563 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  e.  ZZ  /\  -u D  e.  ZZ ) )
98ad2antlr 721 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( -u C  e.  ZZ  /\  -u D  e.  ZZ ) )
10 simplll 752 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  e.  ZZ )
11 simplrl 754 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  C  e.  ZZ )
12 simplrr 755 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  D  e.  ZZ )
13 simpr 458 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  ||  ( C  -  D ) )
14 congsym 29220 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  A  ||  ( C  -  D
) ) )  ->  A  ||  ( D  -  C ) )
1510, 11, 12, 13, 14syl22anc 1214 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  ||  ( D  -  C ) )
1615ex 434 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  D )  ->  A  ||  ( D  -  C ) ) )
17 zcn 10647 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  C  e.  CC )
1817adantr 462 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  C  e.  CC )
19 zcn 10647 . . . . . . . . . . . . . 14  |-  ( D  e.  ZZ  ->  D  e.  CC )
2019adantl 463 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  D  e.  CC )
2118, 20neg2subd 9732 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  -  -u D )  =  ( D  -  C ) )
2221adantl 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( -u C  -  -u D
)  =  ( D  -  C ) )
2322eqcomd 2446 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( D  -  C
)  =  ( -u C  -  -u D ) )
2423breq2d 4301 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( D  -  C )  <->  A 
||  ( -u C  -  -u D ) ) )
2516, 24sylibd 214 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  D )  ->  A  ||  ( -u C  -  -u D ) ) )
2625anim2d 562 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  -u D
) ) ) )
2726imp 429 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  -u D
) ) )
28 congtr 29217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -u C  e.  ZZ  /\  -u D  e.  ZZ )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( -u C  -  -u D ) ) )  ->  A  ||  ( B  -  -u D ) )
295, 9, 27, 28syl3anc 1213 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  A  ||  ( B  -  -u D ) )
3029olcd 393 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
3130ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
32 simpll 748 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
337anim2i 566 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  e.  ZZ  /\  -u D  e.  ZZ ) )
3433ad2antlr 721 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( C  e.  ZZ  /\  -u D  e.  ZZ ) )
35 simpr 458 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  -u D ) ) )
36 congtr 29217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  -u D  e.  ZZ )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D
) ) )  ->  A  ||  ( B  -  -u D ) )
3732, 34, 35, 36syl3anc 1213 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  A  ||  ( B  -  -u D ) )
3837olcd 393 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
3938ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
40 simpll 748 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
416anim1i 565 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  e.  ZZ  /\  D  e.  ZZ ) )
4241ad2antlr 721 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( -u C  e.  ZZ  /\  D  e.  ZZ ) )
43 simpl 454 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ )  ->  A  e.  ZZ )
44 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  ZZ )
4543, 44anim12i 563 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  D  e.  ZZ )  /\  ( B  e.  ZZ  /\  C  e.  ZZ ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
4645an42s 818 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
4746adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
487adantl 463 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u D  e.  ZZ )
4948ad2antlr 721 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  -u D  e.  ZZ )
50 simpr 458 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  A  ||  ( C  -  -u D ) )
51 congsym 29220 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ )  /\  ( -u D  e.  ZZ  /\  A  ||  ( C  -  -u D
) ) )  ->  A  ||  ( -u D  -  C ) )
5247, 49, 50, 51syl12anc 1211 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  A  ||  ( -u D  -  C ) )
5352ex 434 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  -u D )  ->  A  ||  ( -u D  -  C ) ) )
5418negnegd 9706 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u -u C  =  C )
5554oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  -u -u C )  =  (
-u D  -  C
) )
56 zcn 10647 . . . . . . . . . . . . . . 15  |-  ( -u C  e.  ZZ  ->  -u C  e.  CC )
5756adantr 462 . . . . . . . . . . . . . 14  |-  ( (
-u C  e.  ZZ  /\  -u D  e.  ZZ )  ->  -u C  e.  CC )
588, 57syl 16 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u C  e.  CC )
5920, 58neg2subd 9732 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  -u -u C )  =  (
-u C  -  D
) )
6055, 59eqtr3d 2475 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  C )  =  (
-u C  -  D
) )
6160adantl 463 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( -u D  -  C
)  =  ( -u C  -  D )
)
6261breq2d 4301 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( -u D  -  C )  <-> 
A  ||  ( -u C  -  D ) ) )
6353, 62sylibd 214 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  -u D )  ->  A  ||  ( -u C  -  D ) ) )
6463anim2d 562 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  D ) ) ) )
6564imp 429 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  D ) ) )
66 congtr 29217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -u C  e.  ZZ  /\  D  e.  ZZ )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( -u C  -  D ) ) )  ->  A  ||  ( B  -  D )
)
6740, 42, 65, 66syl3anc 1213 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  A  ||  ( B  -  D )
)
6867orcd 392 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
6968ex 434 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
704, 31, 39, 69ccased 933 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A 
||  ( B  -  C )  \/  A  ||  ( B  -  -u C
) )  /\  ( A  ||  ( C  -  D )  \/  A  ||  ( C  -  -u D
) ) )  -> 
( A  ||  ( B  -  D )  \/  A  ||  ( B  -  -u D ) ) ) )
71703impia 1179 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  (
( A  ||  ( B  -  C )  \/  A  ||  ( B  -  -u C ) )  /\  ( A  ||  ( C  -  D
)  \/  A  ||  ( C  -  -u D
) ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   class class class wbr 4289  (class class class)co 6090   CCcc 9276    - cmin 9591   -ucneg 9592   ZZcz 10642    || cdivides 13531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-dvds 13532
This theorem is referenced by:  jm2.25lem1  29256  jm2.26  29260  jm2.27a  29263
  Copyright terms: Public domain W3C validator