Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Unicode version

Theorem acongrep 30886
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  E. a  e.  ( 0 ... A ) ( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) ) )
Distinct variable groups:    A, a    N, a

Proof of Theorem acongrep
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 2nn 10694 . . . 4  |-  2  e.  NN
2 simpl 457 . . . 4  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  A  e.  NN )
3 nnmulcl 10560 . . . 4  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
41, 2, 3sylancr 663 . . 3  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  ( 2  x.  A
)  e.  NN )
5 simpr 461 . . 3  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  N  e.  ZZ )
6 congrep 30879 . . 3  |-  ( ( ( 2  x.  A
)  e.  NN  /\  N  e.  ZZ )  ->  E. b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) ) ( 2  x.  A
)  ||  ( b  -  N ) )
74, 5, 6syl2anc 661 . 2  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  E. b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) ) ( 2  x.  A
)  ||  ( b  -  N ) )
8 elfzelz 11692 . . . . 5  |-  ( b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) )  ->  b  e.  ZZ )
98zred 10969 . . . 4  |-  ( b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) )  ->  b  e.  RR )
109ad2antrl 727 . . 3  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
b  e.  RR )
11 nnre 10544 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
1211ad2antrr 725 . . 3  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  A  e.  RR )
13 elfzle1 11693 . . . . . . 7  |-  ( b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) )  ->  0  <_  b )
1413ad2antrl 727 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
0  <_  b )
1514anim1i 568 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( 0  <_  b  /\  b  <_  A ) )
168ad2antrl 727 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
b  e.  ZZ )
17 0zd 10877 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
0  e.  ZZ )
18 nnz 10887 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
1918ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  A  e.  ZZ )
20 elfz 11682 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  0  e.  ZZ  /\  A  e.  ZZ )  ->  (
b  e.  ( 0 ... A )  <->  ( 0  <_  b  /\  b  <_  A ) ) )
2116, 17, 19, 20syl3anc 1227 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( b  e.  ( 0 ... A )  <-> 
( 0  <_  b  /\  b  <_  A ) ) )
2221adantr 465 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( b  e.  ( 0 ... A
)  <->  ( 0  <_ 
b  /\  b  <_  A ) ) )
2315, 22mpbird 232 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  b  e.  ( 0 ... A
) )
24 simplrr 760 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( 2  x.  A )  ||  ( b  -  N
) )
2524orcd 392 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( (
2  x.  A ) 
||  ( b  -  N )  \/  (
2  x.  A ) 
||  ( b  -  -u N ) ) )
26 id 22 . . . . . 6  |-  ( a  =  b  ->  a  =  b )
27 eqidd 2442 . . . . . 6  |-  ( a  =  b  ->  N  =  N )
2826, 27acongeq12d 30885 . . . . 5  |-  ( a  =  b  ->  (
( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) )  <->  ( (
2  x.  A ) 
||  ( b  -  N )  \/  (
2  x.  A ) 
||  ( b  -  -u N ) ) ) )
2928rspcev 3194 . . . 4  |-  ( ( b  e.  ( 0 ... A )  /\  ( ( 2  x.  A )  ||  (
b  -  N )  \/  ( 2  x.  A )  ||  (
b  -  -u N
) ) )  ->  E. a  e.  (
0 ... A ) ( ( 2  x.  A
)  ||  ( a  -  N )  \/  (
2  x.  A ) 
||  ( a  -  -u N ) ) )
3023, 25, 29syl2anc 661 . . 3  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  E. a  e.  ( 0 ... A
) ( ( 2  x.  A )  ||  ( a  -  N
)  \/  ( 2  x.  A )  ||  ( a  -  -u N
) ) )
31 simplll 757 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  A  e.  NN )
32 simplrl 759 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) ) )
33 simpr 461 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  A  <_  b )
3493ad2ant2 1017 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  e.  RR )
35 2re 10606 . . . . . . . . . . 11  |-  2  e.  RR
36 remulcl 9575 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
3735, 11, 36sylancr 663 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  A )  e.  RR )
38373ad2ant1 1016 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 2  x.  A
)  e.  RR )
39 0zd 10877 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
0  e.  ZZ )
40 2z 10897 . . . . . . . . . . . . 13  |-  2  e.  ZZ
41 zmulcl 10913 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ )  ->  ( 2  x.  A
)  e.  ZZ )
4240, 18, 41sylancr 663 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2  x.  A )  e.  ZZ )
43423ad2ant1 1016 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 2  x.  A
)  e.  ZZ )
44 simp2 996 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) ) )
45 elfzm11 11753 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  ( 2  x.  A
)  e.  ZZ )  ->  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  <->  ( b  e.  ZZ  /\  0  <_ 
b  /\  b  <  ( 2  x.  A ) ) ) )
4645biimpa 484 . . . . . . . . . . 11  |-  ( ( ( 0  e.  ZZ  /\  ( 2  x.  A
)  e.  ZZ )  /\  b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) ) )  ->  ( b  e.  ZZ  /\  0  <_ 
b  /\  b  <  ( 2  x.  A ) ) )
4739, 43, 44, 46syl21anc 1226 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( b  e.  ZZ  /\  0  <_  b  /\  b  <  ( 2  x.  A ) ) )
4847simp3d 1009 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  <  ( 2  x.  A ) )
4934, 38, 48ltled 9731 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  <_  ( 2  x.  A ) )
5038, 34subge0d 10143 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 0  <_  (
( 2  x.  A
)  -  b )  <-> 
b  <_  ( 2  x.  A ) ) )
5149, 50mpbird 232 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
0  <_  ( (
2  x.  A )  -  b ) )
52113ad2ant1 1016 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  ->  A  e.  RR )
53 nncn 10545 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  CC )
54 2times 10655 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
5554oveq1d 6292 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  A )  =  ( ( A  +  A )  -  A ) )
56 pncan2 9827 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( ( A  +  A )  -  A
)  =  A )
5756anidms 645 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( A  +  A
)  -  A )  =  A )
5855, 57eqtrd 2482 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  A )  =  A )
5953, 58syl 16 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 2  x.  A
)  -  A )  =  A )
60593ad2ant1 1016 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( ( 2  x.  A )  -  A
)  =  A )
61 simp3 997 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  ->  A  <_  b )
6260, 61eqbrtrd 4453 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( ( 2  x.  A )  -  A
)  <_  b )
6338, 52, 34, 62subled 10156 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( ( 2  x.  A )  -  b
)  <_  A )
6451, 63jca 532 . . . . . 6  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 0  <_  (
( 2  x.  A
)  -  b )  /\  ( ( 2  x.  A )  -  b )  <_  A
) )
6531, 32, 33, 64syl3anc 1227 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( 0  <_  ( ( 2  x.  A )  -  b )  /\  (
( 2  x.  A
)  -  b )  <_  A ) )
6640, 19, 41sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  e.  ZZ )
6766, 16zsubcld 10974 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( 2  x.  A )  -  b
)  e.  ZZ )
68 elfz 11682 . . . . . . 7  |-  ( ( ( ( 2  x.  A )  -  b
)  e.  ZZ  /\  0  e.  ZZ  /\  A  e.  ZZ )  ->  (
( ( 2  x.  A )  -  b
)  e.  ( 0 ... A )  <->  ( 0  <_  ( ( 2  x.  A )  -  b )  /\  (
( 2  x.  A
)  -  b )  <_  A ) ) )
6967, 17, 19, 68syl3anc 1227 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  e.  ( 0 ... A )  <-> 
( 0  <_  (
( 2  x.  A
)  -  b )  /\  ( ( 2  x.  A )  -  b )  <_  A
) ) )
7069adantr 465 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( (
( 2  x.  A
)  -  b )  e.  ( 0 ... A )  <->  ( 0  <_  ( ( 2  x.  A )  -  b )  /\  (
( 2  x.  A
)  -  b )  <_  A ) ) )
7165, 70mpbird 232 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( (
2  x.  A )  -  b )  e.  ( 0 ... A
) )
72 simplr 754 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  N  e.  ZZ )
73 simprr 756 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( b  -  N ) )
74 congsym 30874 . . . . . . . . 9  |-  ( ( ( ( 2  x.  A )  e.  ZZ  /\  b  e.  ZZ )  /\  ( N  e.  ZZ  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( N  -  b ) )
7566, 16, 72, 73, 74syl22anc 1228 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( N  -  b ) )
7672, 16zsubcld 10974 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( N  -  b
)  e.  ZZ )
77 dvdsadd 13896 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  ZZ  /\  ( N  -  b
)  e.  ZZ )  ->  ( ( 2  x.  A )  ||  ( N  -  b
)  <->  ( 2  x.  A )  ||  (
( 2  x.  A
)  +  ( N  -  b ) ) ) )
7866, 76, 77syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( 2  x.  A )  ||  ( N  -  b )  <->  ( 2  x.  A ) 
||  ( ( 2  x.  A )  +  ( N  -  b
) ) ) )
7975, 78mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( (
2  x.  A )  +  ( N  -  b ) ) )
8067zcnd 10970 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( 2  x.  A )  -  b
)  e.  CC )
81 zcn 10870 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
8281ad2antlr 726 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  N  e.  CC )
8380, 82subnegd 9938 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  -  -u N
)  =  ( ( ( 2  x.  A
)  -  b )  +  N ) )
8466zcnd 10970 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  e.  CC )
8510recnd 9620 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
b  e.  CC )
8684, 85, 82subadd23d 9953 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  +  N
)  =  ( ( 2  x.  A )  +  ( N  -  b ) ) )
8783, 86eqtrd 2482 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  -  -u N
)  =  ( ( 2  x.  A )  +  ( N  -  b ) ) )
8879, 87breqtrrd 4459 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( (
( 2  x.  A
)  -  b )  -  -u N ) )
8988adantr 465 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( 2  x.  A )  ||  ( ( ( 2  x.  A )  -  b )  -  -u N
) )
9089olcd 393 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  N )  \/  (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  -u N ) ) )
91 id 22 . . . . . 6  |-  ( a  =  ( ( 2  x.  A )  -  b )  ->  a  =  ( ( 2  x.  A )  -  b ) )
92 eqidd 2442 . . . . . 6  |-  ( a  =  ( ( 2  x.  A )  -  b )  ->  N  =  N )
9391, 92acongeq12d 30885 . . . . 5  |-  ( a  =  ( ( 2  x.  A )  -  b )  ->  (
( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) )  <->  ( (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  N )  \/  (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  -u N ) ) ) )
9493rspcev 3194 . . . 4  |-  ( ( ( ( 2  x.  A )  -  b
)  e.  ( 0 ... A )  /\  ( ( 2  x.  A )  ||  (
( ( 2  x.  A )  -  b
)  -  N )  \/  ( 2  x.  A )  ||  (
( ( 2  x.  A )  -  b
)  -  -u N
) ) )  ->  E. a  e.  (
0 ... A ) ( ( 2  x.  A
)  ||  ( a  -  N )  \/  (
2  x.  A ) 
||  ( a  -  -u N ) ) )
9571, 90, 94syl2anc 661 . . 3  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  E. a  e.  ( 0 ... A
) ( ( 2  x.  A )  ||  ( a  -  N
)  \/  ( 2  x.  A )  ||  ( a  -  -u N
) ) )
9610, 12, 30, 95lecasei 9688 . 2  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  E. a  e.  (
0 ... A ) ( ( 2  x.  A
)  ||  ( a  -  N )  \/  (
2  x.  A ) 
||  ( a  -  -u N ) ) )
977, 96rexlimddv 2937 1  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  E. a  e.  ( 0 ... A ) ( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   E.wrex 2792   class class class wbr 4433  (class class class)co 6277   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    - cmin 9805   -ucneg 9806   NNcn 10537   2c2 10586   ZZcz 10865   ...cfz 11676    || cdvds 13858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-sup 7899  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fl 11903  df-mod 11971  df-dvds 13859
This theorem is referenced by:  jm2.26  30912
  Copyright terms: Public domain W3C validator