Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Unicode version

Theorem acongrep 29294
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  E. a  e.  ( 0 ... A ) ( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) ) )
Distinct variable groups:    A, a    N, a

Proof of Theorem acongrep
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 2nn 10471 . . . 4  |-  2  e.  NN
2 simpl 457 . . . 4  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  A  e.  NN )
3 nnmulcl 10337 . . . 4  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
41, 2, 3sylancr 663 . . 3  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  ( 2  x.  A
)  e.  NN )
5 simpr 461 . . 3  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  N  e.  ZZ )
6 congrep 29287 . . 3  |-  ( ( ( 2  x.  A
)  e.  NN  /\  N  e.  ZZ )  ->  E. b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) ) ( 2  x.  A
)  ||  ( b  -  N ) )
74, 5, 6syl2anc 661 . 2  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  E. b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) ) ( 2  x.  A
)  ||  ( b  -  N ) )
8 elfzelz 11445 . . . . 5  |-  ( b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) )  ->  b  e.  ZZ )
98zred 10739 . . . 4  |-  ( b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) )  ->  b  e.  RR )
109ad2antrl 727 . . 3  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
b  e.  RR )
11 nnre 10321 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
1211ad2antrr 725 . . 3  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  A  e.  RR )
13 elfzle1 11446 . . . . . . 7  |-  ( b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) )  ->  0  <_  b )
1413ad2antrl 727 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
0  <_  b )
1514anim1i 568 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( 0  <_  b  /\  b  <_  A ) )
168ad2antrl 727 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
b  e.  ZZ )
17 0zd 10650 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
0  e.  ZZ )
18 nnz 10660 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
1918ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  A  e.  ZZ )
20 elfz 11435 . . . . . . 7  |-  ( ( b  e.  ZZ  /\  0  e.  ZZ  /\  A  e.  ZZ )  ->  (
b  e.  ( 0 ... A )  <->  ( 0  <_  b  /\  b  <_  A ) ) )
2116, 17, 19, 20syl3anc 1218 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( b  e.  ( 0 ... A )  <-> 
( 0  <_  b  /\  b  <_  A ) ) )
2221adantr 465 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( b  e.  ( 0 ... A
)  <->  ( 0  <_ 
b  /\  b  <_  A ) ) )
2315, 22mpbird 232 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  b  e.  ( 0 ... A
) )
24 simplrr 760 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( 2  x.  A )  ||  ( b  -  N
) )
2524orcd 392 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  ( (
2  x.  A ) 
||  ( b  -  N )  \/  (
2  x.  A ) 
||  ( b  -  -u N ) ) )
26 id 22 . . . . . 6  |-  ( a  =  b  ->  a  =  b )
27 eqidd 2439 . . . . . 6  |-  ( a  =  b  ->  N  =  N )
2826, 27acongeq12d 29293 . . . . 5  |-  ( a  =  b  ->  (
( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) )  <->  ( (
2  x.  A ) 
||  ( b  -  N )  \/  (
2  x.  A ) 
||  ( b  -  -u N ) ) ) )
2928rspcev 3068 . . . 4  |-  ( ( b  e.  ( 0 ... A )  /\  ( ( 2  x.  A )  ||  (
b  -  N )  \/  ( 2  x.  A )  ||  (
b  -  -u N
) ) )  ->  E. a  e.  (
0 ... A ) ( ( 2  x.  A
)  ||  ( a  -  N )  \/  (
2  x.  A ) 
||  ( a  -  -u N ) ) )
3023, 25, 29syl2anc 661 . . 3  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  b  <_  A
)  ->  E. a  e.  ( 0 ... A
) ( ( 2  x.  A )  ||  ( a  -  N
)  \/  ( 2  x.  A )  ||  ( a  -  -u N
) ) )
31 simplll 757 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  A  e.  NN )
32 simplrl 759 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) ) )
33 simpr 461 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  A  <_  b )
3493ad2ant2 1010 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  e.  RR )
35 2re 10383 . . . . . . . . . . 11  |-  2  e.  RR
36 remulcl 9359 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
3735, 11, 36sylancr 663 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  A )  e.  RR )
38373ad2ant1 1009 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 2  x.  A
)  e.  RR )
39 0zd 10650 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
0  e.  ZZ )
40 2z 10670 . . . . . . . . . . . . 13  |-  2  e.  ZZ
41 zmulcl 10685 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ )  ->  ( 2  x.  A
)  e.  ZZ )
4240, 18, 41sylancr 663 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2  x.  A )  e.  ZZ )
43423ad2ant1 1009 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 2  x.  A
)  e.  ZZ )
44 simp2 989 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) ) )
45 elfzm11 11520 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  ( 2  x.  A
)  e.  ZZ )  ->  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  <->  ( b  e.  ZZ  /\  0  <_ 
b  /\  b  <  ( 2  x.  A ) ) ) )
4645biimpa 484 . . . . . . . . . . 11  |-  ( ( ( 0  e.  ZZ  /\  ( 2  x.  A
)  e.  ZZ )  /\  b  e.  ( 0 ... ( ( 2  x.  A )  -  1 ) ) )  ->  ( b  e.  ZZ  /\  0  <_ 
b  /\  b  <  ( 2  x.  A ) ) )
4739, 43, 44, 46syl21anc 1217 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( b  e.  ZZ  /\  0  <_  b  /\  b  <  ( 2  x.  A ) ) )
4847simp3d 1002 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  <  ( 2  x.  A ) )
4934, 38, 48ltled 9514 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
b  <_  ( 2  x.  A ) )
5038, 34subge0d 9921 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 0  <_  (
( 2  x.  A
)  -  b )  <-> 
b  <_  ( 2  x.  A ) ) )
5149, 50mpbird 232 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
0  <_  ( (
2  x.  A )  -  b ) )
52113ad2ant1 1009 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  ->  A  e.  RR )
53 nncn 10322 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  CC )
54 2times 10432 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
5554oveq1d 6101 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  A )  =  ( ( A  +  A )  -  A ) )
56 pncan2 9609 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( ( A  +  A )  -  A
)  =  A )
5756anidms 645 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( A  +  A
)  -  A )  =  A )
5855, 57eqtrd 2470 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  A )  =  A )
5953, 58syl 16 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 2  x.  A
)  -  A )  =  A )
60593ad2ant1 1009 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( ( 2  x.  A )  -  A
)  =  A )
61 simp3 990 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  ->  A  <_  b )
6260, 61eqbrtrd 4307 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( ( 2  x.  A )  -  A
)  <_  b )
6338, 52, 34, 62subled 9934 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( ( 2  x.  A )  -  b
)  <_  A )
6451, 63jca 532 . . . . . 6  |-  ( ( A  e.  NN  /\  b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  A  <_  b )  -> 
( 0  <_  (
( 2  x.  A
)  -  b )  /\  ( ( 2  x.  A )  -  b )  <_  A
) )
6531, 32, 33, 64syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( 0  <_  ( ( 2  x.  A )  -  b )  /\  (
( 2  x.  A
)  -  b )  <_  A ) )
6640, 19, 41sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  e.  ZZ )
6766, 16zsubcld 10744 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( 2  x.  A )  -  b
)  e.  ZZ )
68 elfz 11435 . . . . . . 7  |-  ( ( ( ( 2  x.  A )  -  b
)  e.  ZZ  /\  0  e.  ZZ  /\  A  e.  ZZ )  ->  (
( ( 2  x.  A )  -  b
)  e.  ( 0 ... A )  <->  ( 0  <_  ( ( 2  x.  A )  -  b )  /\  (
( 2  x.  A
)  -  b )  <_  A ) ) )
6967, 17, 19, 68syl3anc 1218 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  e.  ( 0 ... A )  <-> 
( 0  <_  (
( 2  x.  A
)  -  b )  /\  ( ( 2  x.  A )  -  b )  <_  A
) ) )
7069adantr 465 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( (
( 2  x.  A
)  -  b )  e.  ( 0 ... A )  <->  ( 0  <_  ( ( 2  x.  A )  -  b )  /\  (
( 2  x.  A
)  -  b )  <_  A ) ) )
7165, 70mpbird 232 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( (
2  x.  A )  -  b )  e.  ( 0 ... A
) )
72 simplr 754 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  N  e.  ZZ )
73 simprr 756 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( b  -  N ) )
74 congsym 29282 . . . . . . . . 9  |-  ( ( ( ( 2  x.  A )  e.  ZZ  /\  b  e.  ZZ )  /\  ( N  e.  ZZ  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( N  -  b ) )
7566, 16, 72, 73, 74syl22anc 1219 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( N  -  b ) )
7672, 16zsubcld 10744 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( N  -  b
)  e.  ZZ )
77 dvdsadd 13563 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  ZZ  /\  ( N  -  b
)  e.  ZZ )  ->  ( ( 2  x.  A )  ||  ( N  -  b
)  <->  ( 2  x.  A )  ||  (
( 2  x.  A
)  +  ( N  -  b ) ) ) )
7866, 76, 77syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( 2  x.  A )  ||  ( N  -  b )  <->  ( 2  x.  A ) 
||  ( ( 2  x.  A )  +  ( N  -  b
) ) ) )
7975, 78mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( (
2  x.  A )  +  ( N  -  b ) ) )
8067zcnd 10740 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( 2  x.  A )  -  b
)  e.  CC )
81 zcn 10643 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
8281ad2antlr 726 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  N  e.  CC )
8380, 82subnegd 9718 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  -  -u N
)  =  ( ( ( 2  x.  A
)  -  b )  +  N ) )
8466zcnd 10740 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  e.  CC )
8510recnd 9404 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
b  e.  CC )
8684, 85, 82subadd23d 9733 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  +  N
)  =  ( ( 2  x.  A )  +  ( N  -  b ) ) )
8783, 86eqtrd 2470 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( ( ( 2  x.  A )  -  b )  -  -u N
)  =  ( ( 2  x.  A )  +  ( N  -  b ) ) )
8879, 87breqtrrd 4313 . . . . . 6  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  -> 
( 2  x.  A
)  ||  ( (
( 2  x.  A
)  -  b )  -  -u N ) )
8988adantr 465 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( 2  x.  A )  ||  ( ( ( 2  x.  A )  -  b )  -  -u N
) )
9089olcd 393 . . . 4  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  ( (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  N )  \/  (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  -u N ) ) )
91 id 22 . . . . . 6  |-  ( a  =  ( ( 2  x.  A )  -  b )  ->  a  =  ( ( 2  x.  A )  -  b ) )
92 eqidd 2439 . . . . . 6  |-  ( a  =  ( ( 2  x.  A )  -  b )  ->  N  =  N )
9391, 92acongeq12d 29293 . . . . 5  |-  ( a  =  ( ( 2  x.  A )  -  b )  ->  (
( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) )  <->  ( (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  N )  \/  (
2  x.  A ) 
||  ( ( ( 2  x.  A )  -  b )  -  -u N ) ) ) )
9493rspcev 3068 . . . 4  |-  ( ( ( ( 2  x.  A )  -  b
)  e.  ( 0 ... A )  /\  ( ( 2  x.  A )  ||  (
( ( 2  x.  A )  -  b
)  -  N )  \/  ( 2  x.  A )  ||  (
( ( 2  x.  A )  -  b
)  -  -u N
) ) )  ->  E. a  e.  (
0 ... A ) ( ( 2  x.  A
)  ||  ( a  -  N )  \/  (
2  x.  A ) 
||  ( a  -  -u N ) ) )
9571, 90, 94syl2anc 661 . . 3  |-  ( ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  (
b  e.  ( 0 ... ( ( 2  x.  A )  - 
1 ) )  /\  ( 2  x.  A
)  ||  ( b  -  N ) ) )  /\  A  <_  b
)  ->  E. a  e.  ( 0 ... A
) ( ( 2  x.  A )  ||  ( a  -  N
)  \/  ( 2  x.  A )  ||  ( a  -  -u N
) ) )
9610, 12, 30, 95lecasei 9472 . 2  |-  ( ( ( A  e.  NN  /\  N  e.  ZZ )  /\  ( b  e.  ( 0 ... (
( 2  x.  A
)  -  1 ) )  /\  ( 2  x.  A )  ||  ( b  -  N
) ) )  ->  E. a  e.  (
0 ... A ) ( ( 2  x.  A
)  ||  ( a  -  N )  \/  (
2  x.  A ) 
||  ( a  -  -u N ) ) )
977, 96rexlimddv 2840 1  |-  ( ( A  e.  NN  /\  N  e.  ZZ )  ->  E. a  e.  ( 0 ... A ) ( ( 2  x.  A )  ||  (
a  -  N )  \/  ( 2  x.  A )  ||  (
a  -  -u N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2711   class class class wbr 4287  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588   NNcn 10314   2c2 10363   ZZcz 10638   ...cfz 11429    || cdivides 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fl 11634  df-mod 11701  df-dvds 13528
This theorem is referenced by:  jm2.26  29322
  Copyright terms: Public domain W3C validator