Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongeq12d Structured version   Unicode version

Theorem acongeq12d 35278
 Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Hypotheses
Ref Expression
acongeq12d.1
acongeq12d.2
Assertion
Ref Expression
acongeq12d

Proof of Theorem acongeq12d
StepHypRef Expression
1 acongeq12d.1 . . . 4
2 acongeq12d.2 . . . 4
31, 2oveq12d 6296 . . 3
43breq2d 4407 . 2
52negeqd 9850 . . . 4
61, 5oveq12d 6296 . . 3
76breq2d 4407 . 2
84, 7orbi12d 708 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wo 366   wceq 1405   class class class wbr 4395  (class class class)co 6278   cmin 9841  cneg 9842   cdvds 14195 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-iota 5533  df-fv 5577  df-ov 6281  df-neg 9844 This theorem is referenced by:  acongrep  35279  jm2.26a  35304  jm2.26  35306
 Copyright terms: Public domain W3C validator