MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Structured version   Unicode version

Theorem acnnum 8424
Description: A set  X which has choice sequences on it of length  ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum  |-  ( X  e. AC  ~P X  <->  X  e.  dom  card )

Proof of Theorem acnnum
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4621 . . . . . . 7  |-  ( X  e. AC  ~P X  ->  ~P X  e.  _V )
2 difss 3617 . . . . . . 7  |-  ( ~P X  \  { (/) } )  C_  ~P X
3 ssdomg 7554 . . . . . . 7  |-  ( ~P X  e.  _V  ->  ( ( ~P X  \  { (/) } )  C_  ~P X  ->  ( ~P X  \  { (/) } )  ~<_  ~P X ) )
41, 2, 3mpisyl 18 . . . . . 6  |-  ( X  e. AC  ~P X  ->  ( ~P X  \  { (/) } )  ~<_  ~P X )
5 acndom 8423 . . . . . 6  |-  ( ( ~P X  \  { (/)
} )  ~<_  ~P X  ->  ( X  e. AC  ~P X  ->  X  e. AC  ( ~P X  \  { (/) } ) ) )
64, 5mpcom 36 . . . . 5  |-  ( X  e. AC  ~P X  ->  X  e. AC  ( ~P X  \  { (/) } ) )
7 eldifsn 4141 . . . . . . 7  |-  ( x  e.  ( ~P X  \  { (/) } )  <->  ( x  e.  ~P X  /\  x  =/=  (/) ) )
8 elpwi 4008 . . . . . . . 8  |-  ( x  e.  ~P X  ->  x  C_  X )
98anim1i 566 . . . . . . 7  |-  ( ( x  e.  ~P X  /\  x  =/=  (/) )  -> 
( x  C_  X  /\  x  =/=  (/) ) )
107, 9sylbi 195 . . . . . 6  |-  ( x  e.  ( ~P X  \  { (/) } )  -> 
( x  C_  X  /\  x  =/=  (/) ) )
1110rgen 2814 . . . . 5  |-  A. x  e.  ( ~P X  \  { (/) } ) ( x  C_  X  /\  x  =/=  (/) )
12 acni2 8418 . . . . 5  |-  ( ( X  e. AC  ( ~P X  \  { (/) } )  /\  A. x  e.  ( ~P X  \  { (/) } ) ( x  C_  X  /\  x  =/=  (/) ) )  ->  E. f ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x )  e.  x ) )
136, 11, 12sylancl 660 . . . 4  |-  ( X  e. AC  ~P X  ->  E. f
( f : ( ~P X  \  { (/)
} ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x )  e.  x
) )
14 simpr 459 . . . . . 6  |-  ( ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x
)  e.  x )  ->  A. x  e.  ( ~P X  \  { (/)
} ) ( f `
 x )  e.  x )
157imbi1i 323 . . . . . . . 8  |-  ( ( x  e.  ( ~P X  \  { (/) } )  ->  ( f `  x )  e.  x
)  <->  ( ( x  e.  ~P X  /\  x  =/=  (/) )  ->  (
f `  x )  e.  x ) )
16 impexp 444 . . . . . . . 8  |-  ( ( ( x  e.  ~P X  /\  x  =/=  (/) )  -> 
( f `  x
)  e.  x )  <-> 
( x  e.  ~P X  ->  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
1715, 16bitri 249 . . . . . . 7  |-  ( ( x  e.  ( ~P X  \  { (/) } )  ->  ( f `  x )  e.  x
)  <->  ( x  e. 
~P X  ->  (
x  =/=  (/)  ->  (
f `  x )  e.  x ) ) )
1817ralbii2 2883 . . . . . 6  |-  ( A. x  e.  ( ~P X  \  { (/) } ) ( f `  x
)  e.  x  <->  A. x  e.  ~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
1914, 18sylib 196 . . . . 5  |-  ( ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x
)  e.  x )  ->  A. x  e.  ~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
2019eximi 1661 . . . 4  |-  ( E. f ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x )  e.  x )  ->  E. f A. x  e. 
~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
2113, 20syl 16 . . 3  |-  ( X  e. AC  ~P X  ->  E. f A. x  e.  ~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
22 dfac8a 8402 . . 3  |-  ( X  e. AC  ~P X  ->  ( E. f A. x  e. 
~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
)  ->  X  e.  dom  card ) )
2321, 22mpd 15 . 2  |-  ( X  e. AC  ~P X  ->  X  e.  dom  card )
24 pwexg 4621 . . 3  |-  ( X  e.  dom  card  ->  ~P X  e.  _V )
25 numacn 8421 . . 3  |-  ( ~P X  e.  _V  ->  ( X  e.  dom  card  ->  X  e. AC  ~P X ) )
2624, 25mpcom 36 . 2  |-  ( X  e.  dom  card  ->  X  e. AC  ~P X )
2723, 26impbii 188 1  |-  ( X  e. AC  ~P X  <->  X  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   E.wex 1617    e. wcel 1823    =/= wne 2649   A.wral 2804   _Vcvv 3106    \ cdif 3458    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   {csn 4016   class class class wbr 4439   dom cdm 4988   -->wf 5566   ` cfv 5570    ~<_ cdom 7507   cardccrd 8307  AC wacn 8310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-1o 7122  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-fin 7513  df-card 8311  df-acn 8314
This theorem is referenced by:  dfac13  8513
  Copyright terms: Public domain W3C validator