MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Unicode version

Theorem acni 8234
Description: The property of being a choice set of length  A. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) )
Distinct variable groups:    x, g, A    g, F, x    g, X, x

Proof of Theorem acni
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 pwexg 4495 . . . . 5  |-  ( X  e. AC  A  ->  ~P X  e.  _V )
2 difexg 4459 . . . . 5  |-  ( ~P X  e.  _V  ->  ( ~P X  \  { (/)
} )  e.  _V )
31, 2syl 16 . . . 4  |-  ( X  e. AC  A  ->  ( ~P X  \  { (/) } )  e.  _V )
4 acnrcl 8231 . . . 4  |-  ( X  e. AC  A  ->  A  e. 
_V )
5 elmapg 7246 . . . 4  |-  ( ( ( ~P X  \  { (/) } )  e. 
_V  /\  A  e.  _V )  ->  ( F  e.  ( ( ~P X  \  { (/) } )  ^m  A )  <-> 
F : A --> ( ~P X  \  { (/) } ) ) )
63, 4, 5syl2anc 661 . . 3  |-  ( X  e. AC  A  ->  ( F  e.  ( ( ~P X  \  { (/) } )  ^m  A )  <-> 
F : A --> ( ~P X  \  { (/) } ) ) )
76biimpar 485 . 2  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  F  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )
8 isacn 8233 . . . . 5  |-  ( ( X  e. AC  A  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
94, 8mpdan 668 . . . 4  |-  ( X  e. AC  A  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
109ibi 241 . . 3  |-  ( X  e. AC  A  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
1110adantr 465 . 2  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
12 fveq1 5709 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
1312eleq2d 2510 . . . . 5  |-  ( f  =  F  ->  (
( g `  x
)  e.  ( f `
 x )  <->  ( g `  x )  e.  ( F `  x ) ) )
1413ralbidv 2754 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  ( g `  x
)  e.  ( f `
 x )  <->  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
1514exbidv 1680 . . 3  |-  ( f  =  F  ->  ( E. g A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  E. g A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
1615rspcv 3088 . 2  |-  ( F  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  ( A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
177, 11, 16sylc 60 1  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2734   _Vcvv 2991    \ cdif 3344   (/)c0 3656   ~Pcpw 3879   {csn 3896   -->wf 5433   ` cfv 5437  (class class class)co 6110    ^m cmap 7233  AC wacn 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-sbc 3206  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-br 4312  df-opab 4370  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-fv 5445  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-map 7235  df-acn 8131
This theorem is referenced by:  acni2  8235
  Copyright terms: Public domain W3C validator