MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnen2 Structured version   Unicode version

Theorem acnen2 8448
Description: The class of sets with choice sequences of length  A is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnen2  |-  ( X 
~~  Y  ->  ( X  e. AC  A  <->  Y  e. AC  A ) )

Proof of Theorem acnen2
StepHypRef Expression
1 ensym 7576 . . 3  |-  ( X 
~~  Y  ->  Y  ~~  X )
2 endom 7554 . . 3  |-  ( Y 
~~  X  ->  Y  ~<_  X )
3 acndom2 8447 . . 3  |-  ( Y  ~<_  X  ->  ( X  e. AC  A  ->  Y  e. AC  A ) )
41, 2, 33syl 20 . 2  |-  ( X 
~~  Y  ->  ( X  e. AC  A  ->  Y  e. AC  A ) )
5 endom 7554 . . 3  |-  ( X 
~~  Y  ->  X  ~<_  Y )
6 acndom2 8447 . . 3  |-  ( X  ~<_  Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )
75, 6syl 16 . 2  |-  ( X 
~~  Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )
84, 7impbid 191 1  |-  ( X 
~~  Y  ->  ( X  e. AC  A  <->  Y  e. AC  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1767   class class class wbr 4453    ~~ cen 7525    ~<_ cdom 7526  AC wacn 8331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-acn 8335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator