MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Unicode version

Theorem acndom 7888
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom  |-  ( A  ~<_  B  ->  ( X  e. AC  B  ->  X  e. AC  A ) )

Proof of Theorem acndom
Dummy variables  f 
g  h  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7078 . 2  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
2 neq0 3598 . . . . 5  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
3 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  X  e. AC  B )
4 elmapi 6997 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  g : A --> ( ~P X  \  { (/)
} ) )
54ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  g : A --> ( ~P X  \  { (/) } ) )
6 simpll1 996 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  f : A -1-1-> B
)
7 f1f1orn 5644 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-> B  -> 
f : A -1-1-onto-> ran  f
)
86, 7syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  f : A -1-1-onto-> ran  f
)
9 f1ocnv 5646 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> ran  f  ->  `' f : ran  f -1-1-onto-> A )
10 f1of 5633 . . . . . . . . . . . . . . . . 17  |-  ( `' f : ran  f -1-1-onto-> A  ->  `' f : ran  f
--> A )
118, 9, 103syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  `' f : ran  f
--> A )
1211ffvelrnda 5829 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  /\  y  e.  ran  f )  -> 
( `' f `  y )  e.  A
)
13 simpl2 961 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  x  e.  A )
1413ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  /\  -.  y  e.  ran  f )  ->  x  e.  A
)
1512, 14ifclda 3726 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  if ( y  e. 
ran  f ,  ( `' f `  y
) ,  x )  e.  A )
165, 15ffvelrnd 5830 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  e.  ( ~P X  \  { (/) } ) )
17 eldifsn 3887 . . . . . . . . . . . . . 14  |-  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e.  ( ~P X  \  { (/) } )  <->  ( (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e. 
~P X  /\  (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  =/=  (/) ) )
18 elpwi 3767 . . . . . . . . . . . . . . 15  |-  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e. 
~P X  ->  (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  C_  X )
1918anim1i 552 . . . . . . . . . . . . . 14  |-  ( ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  e. 
~P X  /\  (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  =/=  (/) )  ->  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
2017, 19sylbi 188 . . . . . . . . . . . . 13  |-  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e.  ( ~P X  \  { (/) } )  -> 
( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
2116, 20syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
2221ralrimiva 2749 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  A. y  e.  B  ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
23 acni2 7883 . . . . . . . . . . 11  |-  ( ( X  e. AC  B  /\  A. y  e.  B  ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )  ->  E. k
( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )
243, 22, 23syl2anc 643 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. k ( k : B --> X  /\  A. y  e.  B  (
k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) ) ) )
25 f1dm 5602 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  ->  dom  f  =  A
)
26 vex 2919 . . . . . . . . . . . . . . 15  |-  f  e. 
_V
2726dmex 5091 . . . . . . . . . . . . . 14  |-  dom  f  e.  _V
2825, 27syl6eqelr 2493 . . . . . . . . . . . . 13  |-  ( f : A -1-1-> B  ->  A  e.  _V )
29283ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  A  e.  _V )
3029ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )  ->  A  e.  _V )
31 simpll1 996 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  f : A -1-1-> B )
32 f1f 5598 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-> B  -> 
f : A --> B )
33 frn 5556 . . . . . . . . . . . . . . . . 17  |-  ( f : A --> B  ->  ran  f  C_  B )
3431, 32, 333syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ran  f  C_  B )
35 ssralv 3367 . . . . . . . . . . . . . . . 16  |-  ( ran  f  C_  B  ->  ( A. y  e.  B  ( k `  y
)  e.  ( g `
 if ( y  e.  ran  f ,  ( `' f `  y ) ,  x
) )  ->  A. y  e.  ran  f ( k `
 y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) ) ) )
3634, 35syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. y  e.  ran  f ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )
37 iftrue 3705 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ran  f  ->  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x )  =  ( `' f `  y
) )
3837fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ran  f  -> 
( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =  ( g `  ( `' f `  y
) ) )
3938eleq2d 2471 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ran  f  -> 
( ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  <->  ( k `  y )  e.  ( g `  ( `' f `  y ) ) ) )
4039ralbiia 2698 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  ran  f ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  <->  A. y  e.  ran  f ( k `
 y )  e.  ( g `  ( `' f `  y
) ) )
4136, 40syl6ib 218 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. y  e.  ran  f ( k `  y )  e.  ( g `  ( `' f `  y ) ) ) )
42 f1fn 5599 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-> B  -> 
f  Fn  A )
43 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f `  z )  ->  (
k `  y )  =  ( k `  ( f `  z
) ) )
44 fveq2 5687 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( f `  z )  ->  ( `' f `  y
)  =  ( `' f `  ( f `
 z ) ) )
4544fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f `  z )  ->  (
g `  ( `' f `  y )
)  =  ( g `
 ( `' f `
 ( f `  z ) ) ) )
4643, 45eleq12d 2472 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( f `  z )  ->  (
( k `  y
)  e.  ( g `
 ( `' f `
 y ) )  <-> 
( k `  (
f `  z )
)  e.  ( g `
 ( `' f `
 ( f `  z ) ) ) ) )
4746ralrn 5832 . . . . . . . . . . . . . . 15  |-  ( f  Fn  A  ->  ( A. y  e.  ran  f ( k `  y )  e.  ( g `  ( `' f `  y ) )  <->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 ( `' f `
 ( f `  z ) ) ) ) )
4831, 42, 473syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  ran  f ( k `
 y )  e.  ( g `  ( `' f `  y
) )  <->  A. z  e.  A  ( k `  ( f `  z
) )  e.  ( g `  ( `' f `  ( f `
 z ) ) ) ) )
4941, 48sylibd 206 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 ( `' f `
 ( f `  z ) ) ) ) )
5031, 7syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  f : A -1-1-onto-> ran  f )
51 f1ocnvfv1 5973 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-onto-> ran  f  /\  z  e.  A
)  ->  ( `' f `  ( f `  z ) )  =  z )
5250, 51sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  /\  z  e.  A )  ->  ( `' f `  ( f `  z
) )  =  z )
5352fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  /\  z  e.  A )  ->  ( g `  ( `' f `  (
f `  z )
) )  =  ( g `  z ) )
5453eleq2d 2471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  /\  z  e.  A )  ->  ( ( k `  ( f `  z
) )  e.  ( g `  ( `' f `  ( f `
 z ) ) )  <->  ( k `  ( f `  z
) )  e.  ( g `  z ) ) )
5554ralbidva 2682 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. z  e.  A  ( k `  ( f `  z
) )  e.  ( g `  ( `' f `  ( f `
 z ) ) )  <->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 z ) ) )
5649, 55sylibd 206 . . . . . . . . . . . 12  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 z ) ) )
5756impr 603 . . . . . . . . . . 11  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )  ->  A. z  e.  A  ( k `  ( f `  z
) )  e.  ( g `  z ) )
58 acnlem 7885 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  A. z  e.  A  ( k `  ( f `
 z ) )  e.  ( g `  z ) )  ->  E. h A. z  e.  A  ( h `  z )  e.  ( g `  z ) )
5930, 57, 58syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )  ->  E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) )
6024, 59exlimddv 1645 . . . . . . . . 9  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h A. z  e.  A  ( h `  z )  e.  ( g `  z ) )
6160ralrimiva 2749 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) )
62 elex 2924 . . . . . . . . . 10  |-  ( X  e. AC  B  ->  X  e. 
_V )
63 isacn 7881 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) ) )
6462, 28, 63syl2anr 465 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  X  e. AC  B )  ->  ( X  e. AC  A 
<-> 
A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) ) )
65643adant2 976 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  ( X  e. AC  A 
<-> 
A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) ) )
6661, 65mpbird 224 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  X  e. AC  A )
67663exp 1152 . . . . . 6  |-  ( f : A -1-1-> B  -> 
( x  e.  A  ->  ( X  e. AC  B  ->  X  e. AC  A ) ) )
6867exlimdv 1643 . . . . 5  |-  ( f : A -1-1-> B  -> 
( E. x  x  e.  A  ->  ( X  e. AC  B  ->  X  e. AC  A ) ) )
692, 68syl5bi 209 . . . 4  |-  ( f : A -1-1-> B  -> 
( -.  A  =  (/)  ->  ( X  e. AC  B  ->  X  e. AC  A ) ) )
70 acneq 7880 . . . . . . 7  |-  ( A  =  (/)  -> AC  A  = AC  (/) )
71 0fin 7295 . . . . . . . 8  |-  (/)  e.  Fin
72 finacn 7887 . . . . . . . 8  |-  ( (/)  e.  Fin  -> AC  (/)  =  _V )
7371, 72ax-mp 8 . . . . . . 7  |- AC  (/)  =  _V
7470, 73syl6eq 2452 . . . . . 6  |-  ( A  =  (/)  -> AC  A  =  _V )
7574eleq2d 2471 . . . . 5  |-  ( A  =  (/)  ->  ( X  e. AC  A  <->  X  e.  _V ) )
7662, 75syl5ibr 213 . . . 4  |-  ( A  =  (/)  ->  ( X  e. AC  B  ->  X  e. AC  A ) )
7769, 76pm2.61d2 154 . . 3  |-  ( f : A -1-1-> B  -> 
( X  e. AC  B  ->  X  e. AC  A ) )
7877exlimiv 1641 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( X  e. AC  B  ->  X  e. AC  A ) )
791, 78syl 16 1  |-  ( A  ~<_  B  ->  ( X  e. AC  B  ->  X  e. AC  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916    \ cdif 3277    C_ wss 3280   (/)c0 3588   ifcif 3699   ~Pcpw 3759   {csn 3774   class class class wbr 4172   `'ccnv 4836   dom cdm 4837   ran crn 4838    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    ^m cmap 6977    ~<_ cdom 7066   Fincfn 7068  AC wacn 7781
This theorem is referenced by:  acnnum  7889  acnen  7890  iunctb  8405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-1o 6683  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-fin 7072  df-acn 7785
  Copyright terms: Public domain W3C validator