MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Structured version   Unicode version

Theorem acndom 8428
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom  |-  ( A  ~<_  B  ->  ( X  e. AC  B  ->  X  e. AC  A ) )

Proof of Theorem acndom
Dummy variables  f 
g  h  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7524 . 2  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
2 neq0 3795 . . . . 5  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
3 simpl3 1001 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  X  e. AC  B )
4 elmapi 7437 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  g : A --> ( ~P X  \  { (/)
} ) )
54ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  g : A --> ( ~P X  \  { (/) } ) )
6 simpll1 1035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  f : A -1-1-> B
)
7 f1f1orn 5825 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-> B  -> 
f : A -1-1-onto-> ran  f
)
8 f1ocnv 5826 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> ran  f  ->  `' f : ran  f -1-1-onto-> A )
9 f1of 5814 . . . . . . . . . . . . . . . . 17  |-  ( `' f : ran  f -1-1-onto-> A  ->  `' f : ran  f
--> A )
106, 7, 8, 94syl 21 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  `' f : ran  f
--> A )
1110ffvelrnda 6019 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  /\  y  e.  ran  f )  -> 
( `' f `  y )  e.  A
)
12 simpl2 1000 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  x  e.  A )
1312ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  /\  -.  y  e.  ran  f )  ->  x  e.  A
)
1411, 13ifclda 3971 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  if ( y  e. 
ran  f ,  ( `' f `  y
) ,  x )  e.  A )
155, 14ffvelrnd 6020 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  e.  ( ~P X  \  { (/) } ) )
16 eldifsn 4152 . . . . . . . . . . . . . 14  |-  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e.  ( ~P X  \  { (/) } )  <->  ( (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e. 
~P X  /\  (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  =/=  (/) ) )
17 elpwi 4019 . . . . . . . . . . . . . . 15  |-  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e. 
~P X  ->  (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  C_  X )
1817anim1i 568 . . . . . . . . . . . . . 14  |-  ( ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  e. 
~P X  /\  (
g `  if (
y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  =/=  (/) )  ->  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
1916, 18sylbi 195 . . . . . . . . . . . . 13  |-  ( ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  e.  ( ~P X  \  { (/) } )  -> 
( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
2015, 19syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  y  e.  B )  ->  ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
2120ralrimiva 2878 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  A. y  e.  B  ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )
22 acni2 8423 . . . . . . . . . . 11  |-  ( ( X  e. AC  B  /\  A. y  e.  B  ( ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  C_  X  /\  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =/=  (/) ) )  ->  E. k
( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )
233, 21, 22syl2anc 661 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. k ( k : B --> X  /\  A. y  e.  B  (
k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) ) ) )
24 f1dm 5783 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  ->  dom  f  =  A
)
25 vex 3116 . . . . . . . . . . . . . . 15  |-  f  e. 
_V
2625dmex 6714 . . . . . . . . . . . . . 14  |-  dom  f  e.  _V
2724, 26syl6eqelr 2564 . . . . . . . . . . . . 13  |-  ( f : A -1-1-> B  ->  A  e.  _V )
28273ad2ant1 1017 . . . . . . . . . . . 12  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  A  e.  _V )
2928ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )  ->  A  e.  _V )
30 simpll1 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  f : A -1-1-> B )
31 f1f 5779 . . . . . . . . . . . . . . . 16  |-  ( f : A -1-1-> B  -> 
f : A --> B )
32 frn 5735 . . . . . . . . . . . . . . . 16  |-  ( f : A --> B  ->  ran  f  C_  B )
33 ssralv 3564 . . . . . . . . . . . . . . . 16  |-  ( ran  f  C_  B  ->  ( A. y  e.  B  ( k `  y
)  e.  ( g `
 if ( y  e.  ran  f ,  ( `' f `  y ) ,  x
) )  ->  A. y  e.  ran  f ( k `
 y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) ) ) )
3430, 31, 32, 334syl 21 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. y  e.  ran  f ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )
35 iftrue 3945 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ran  f  ->  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x )  =  ( `' f `  y
) )
3635fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ran  f  -> 
( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  =  ( g `  ( `' f `  y
) ) )
3736eleq2d 2537 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ran  f  -> 
( ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  <->  ( k `  y )  e.  ( g `  ( `' f `  y ) ) ) )
3837ralbiia 2894 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  ran  f ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `  y ) ,  x ) )  <->  A. y  e.  ran  f ( k `
 y )  e.  ( g `  ( `' f `  y
) ) )
3934, 38syl6ib 226 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. y  e.  ran  f ( k `  y )  e.  ( g `  ( `' f `  y ) ) ) )
40 f1fn 5780 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-> B  -> 
f  Fn  A )
41 fveq2 5864 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f `  z )  ->  (
k `  y )  =  ( k `  ( f `  z
) ) )
42 fveq2 5864 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( f `  z )  ->  ( `' f `  y
)  =  ( `' f `  ( f `
 z ) ) )
4342fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f `  z )  ->  (
g `  ( `' f `  y )
)  =  ( g `
 ( `' f `
 ( f `  z ) ) ) )
4441, 43eleq12d 2549 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( f `  z )  ->  (
( k `  y
)  e.  ( g `
 ( `' f `
 y ) )  <-> 
( k `  (
f `  z )
)  e.  ( g `
 ( `' f `
 ( f `  z ) ) ) ) )
4544ralrn 6022 . . . . . . . . . . . . . . 15  |-  ( f  Fn  A  ->  ( A. y  e.  ran  f ( k `  y )  e.  ( g `  ( `' f `  y ) )  <->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 ( `' f `
 ( f `  z ) ) ) ) )
4630, 40, 453syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  ran  f ( k `
 y )  e.  ( g `  ( `' f `  y
) )  <->  A. z  e.  A  ( k `  ( f `  z
) )  e.  ( g `  ( `' f `  ( f `
 z ) ) ) ) )
4739, 46sylibd 214 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 ( `' f `
 ( f `  z ) ) ) ) )
4830, 7syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  f : A -1-1-onto-> ran  f )
49 f1ocnvfv1 6168 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-onto-> ran  f  /\  z  e.  A
)  ->  ( `' f `  ( f `  z ) )  =  z )
5048, 49sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  /\  z  e.  A )  ->  ( `' f `  ( f `  z
) )  =  z )
5150fveq2d 5868 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  /\  z  e.  A )  ->  ( g `  ( `' f `  (
f `  z )
) )  =  ( g `  z ) )
5251eleq2d 2537 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  /\  z  e.  A )  ->  ( ( k `  ( f `  z
) )  e.  ( g `  ( `' f `  ( f `
 z ) ) )  <->  ( k `  ( f `  z
) )  e.  ( g `  z ) ) )
5352ralbidva 2900 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. z  e.  A  ( k `  ( f `  z
) )  e.  ( g `  ( `' f `  ( f `
 z ) ) )  <->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 z ) ) )
5447, 53sylibd 214 . . . . . . . . . . . 12  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : B --> X )  ->  ( A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) )  ->  A. z  e.  A  ( k `  (
f `  z )
)  e.  ( g `
 z ) ) )
5554impr 619 . . . . . . . . . . 11  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )  ->  A. z  e.  A  ( k `  ( f `  z
) )  e.  ( g `  z ) )
56 acnlem 8425 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  A. z  e.  A  ( k `  ( f `
 z ) )  e.  ( g `  z ) )  ->  E. h A. z  e.  A  ( h `  z )  e.  ( g `  z ) )
5729, 55, 56syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : B --> X  /\  A. y  e.  B  ( k `  y )  e.  ( g `  if ( y  e.  ran  f ,  ( `' f `
 y ) ,  x ) ) ) )  ->  E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) )
5823, 57exlimddv 1702 . . . . . . . . 9  |-  ( ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h A. z  e.  A  ( h `  z )  e.  ( g `  z ) )
5958ralrimiva 2878 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) )
60 elex 3122 . . . . . . . . . 10  |-  ( X  e. AC  B  ->  X  e. 
_V )
61 isacn 8421 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) ) )
6260, 27, 61syl2anr 478 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  X  e. AC  B )  ->  ( X  e. AC  A 
<-> 
A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) ) )
63623adant2 1015 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  ( X  e. AC  A 
<-> 
A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. z  e.  A  ( h `  z
)  e.  ( g `
 z ) ) )
6459, 63mpbird 232 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  x  e.  A  /\  X  e. AC  B )  ->  X  e. AC  A )
65643exp 1195 . . . . . 6  |-  ( f : A -1-1-> B  -> 
( x  e.  A  ->  ( X  e. AC  B  ->  X  e. AC  A ) ) )
6665exlimdv 1700 . . . . 5  |-  ( f : A -1-1-> B  -> 
( E. x  x  e.  A  ->  ( X  e. AC  B  ->  X  e. AC  A ) ) )
672, 66syl5bi 217 . . . 4  |-  ( f : A -1-1-> B  -> 
( -.  A  =  (/)  ->  ( X  e. AC  B  ->  X  e. AC  A ) ) )
68 acneq 8420 . . . . . . 7  |-  ( A  =  (/)  -> AC  A  = AC  (/) )
69 0fin 7744 . . . . . . . 8  |-  (/)  e.  Fin
70 finacn 8427 . . . . . . . 8  |-  ( (/)  e.  Fin  -> AC  (/)  =  _V )
7169, 70ax-mp 5 . . . . . . 7  |- AC  (/)  =  _V
7268, 71syl6eq 2524 . . . . . 6  |-  ( A  =  (/)  -> AC  A  =  _V )
7372eleq2d 2537 . . . . 5  |-  ( A  =  (/)  ->  ( X  e. AC  A  <->  X  e.  _V ) )
7460, 73syl5ibr 221 . . . 4  |-  ( A  =  (/)  ->  ( X  e. AC  B  ->  X  e. AC  A ) )
7567, 74pm2.61d2 160 . . 3  |-  ( f : A -1-1-> B  -> 
( X  e. AC  B  ->  X  e. AC  A ) )
7675exlimiv 1698 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( X  e. AC  B  ->  X  e. AC  A ) )
771, 76syl 16 1  |-  ( A  ~<_  B  ->  ( X  e. AC  B  ->  X  e. AC  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   ifcif 3939   ~Pcpw 4010   {csn 4027   class class class wbr 4447   `'ccnv 4998   dom cdm 4999   ran crn 5000    Fn wfn 5581   -->wf 5582   -1-1->wf1 5583   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282    ^m cmap 7417    ~<_ cdom 7511   Fincfn 7513  AC wacn 8315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-1o 7127  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-fin 7517  df-acn 8319
This theorem is referenced by:  acnnum  8429  acnen  8430  iunctb  8945
  Copyright terms: Public domain W3C validator