MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acncc Structured version   Unicode version

Theorem acncc 8820
Description: An ax-cc 8815 equivalent: every set has choice sets of length  om. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acncc  |- AC  om  =  _V

Proof of Theorem acncc
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3116 . . . . 5  |-  x  e. 
_V
2 omex 8060 . . . . 5  |-  om  e.  _V
3 isacn 8425 . . . . 5  |-  ( ( x  e.  _V  /\  om  e.  _V )  -> 
( x  e. AC  om  <->  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  om ) E. g A. y  e.  om  (
g `  y )  e.  ( f `  y
) ) )
41, 2, 3mp2an 672 . . . 4  |-  ( x  e. AC  om  <->  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  om ) E. g A. y  e.  om  (
g `  y )  e.  ( f `  y
) )
5 axcc2 8817 . . . . 5  |-  E. g
( g  Fn  om  /\ 
A. y  e.  om  ( ( f `  y )  =/=  (/)  ->  (
g `  y )  e.  ( f `  y
) ) )
6 elmapi 7440 . . . . . . . . . 10  |-  ( f  e.  ( ( ~P x  \  { (/) } )  ^m  om )  ->  f : om --> ( ~P x  \  { (/) } ) )
7 ffvelrn 6019 . . . . . . . . . . 11  |-  ( ( f : om --> ( ~P x  \  { (/) } )  /\  y  e. 
om )  ->  (
f `  y )  e.  ( ~P x  \  { (/) } ) )
8 eldifsni 4153 . . . . . . . . . . 11  |-  ( ( f `  y )  e.  ( ~P x  \  { (/) } )  -> 
( f `  y
)  =/=  (/) )
97, 8syl 16 . . . . . . . . . 10  |-  ( ( f : om --> ( ~P x  \  { (/) } )  /\  y  e. 
om )  ->  (
f `  y )  =/=  (/) )
106, 9sylan 471 . . . . . . . . 9  |-  ( ( f  e.  ( ( ~P x  \  { (/)
} )  ^m  om )  /\  y  e.  om )  ->  ( f `  y )  =/=  (/) )
11 id 22 . . . . . . . . 9  |-  ( ( ( f `  y
)  =/=  (/)  ->  (
g `  y )  e.  ( f `  y
) )  ->  (
( f `  y
)  =/=  (/)  ->  (
g `  y )  e.  ( f `  y
) ) )
1210, 11syl5com 30 . . . . . . . 8  |-  ( ( f  e.  ( ( ~P x  \  { (/)
} )  ^m  om )  /\  y  e.  om )  ->  ( ( ( f `  y )  =/=  (/)  ->  ( g `  y )  e.  ( f `  y ) )  ->  ( g `  y )  e.  ( f `  y ) ) )
1312ralimdva 2872 . . . . . . 7  |-  ( f  e.  ( ( ~P x  \  { (/) } )  ^m  om )  ->  ( A. y  e. 
om  ( ( f `
 y )  =/=  (/)  ->  ( g `  y )  e.  ( f `  y ) )  ->  A. y  e.  om  ( g `  y )  e.  ( f `  y ) ) )
1413adantld 467 . . . . . 6  |-  ( f  e.  ( ( ~P x  \  { (/) } )  ^m  om )  ->  ( ( g  Fn 
om  /\  A. y  e.  om  ( ( f `
 y )  =/=  (/)  ->  ( g `  y )  e.  ( f `  y ) ) )  ->  A. y  e.  om  ( g `  y )  e.  ( f `  y ) ) )
1514eximdv 1686 . . . . 5  |-  ( f  e.  ( ( ~P x  \  { (/) } )  ^m  om )  ->  ( E. g ( g  Fn  om  /\  A. y  e.  om  (
( f `  y
)  =/=  (/)  ->  (
g `  y )  e.  ( f `  y
) ) )  ->  E. g A. y  e. 
om  ( g `  y )  e.  ( f `  y ) ) )
165, 15mpi 17 . . . 4  |-  ( f  e.  ( ( ~P x  \  { (/) } )  ^m  om )  ->  E. g A. y  e.  om  ( g `  y )  e.  ( f `  y ) )
174, 16mprgbir 2828 . . 3  |-  x  e. AC  om
1817, 12th 239 . 2  |-  ( x  e. AC  om  <->  x  e.  _V )
1918eqriv 2463 1  |- AC  om  =  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473   (/)c0 3785   ~Pcpw 4010   {csn 4027    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   omcom 6684    ^m cmap 7420  AC wacn 8319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cc 8815
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-er 7311  df-map 7422  df-en 7517  df-acn 8323
This theorem is referenced by:  iunctb  8949
  Copyright terms: Public domain W3C validator