MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq3lem Structured version   Unicode version

Theorem aceq3lem 8518
Description: Lemma for dfac3 8519. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
aceq3lem.1  |-  F  =  ( w  e.  dom  y  |->  ( f `  { u  |  w
y u } ) )
Assertion
Ref Expression
aceq3lem  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
Distinct variable group:    x, y, z, w, u, f
Allowed substitution hints:    F( x, y, z, w, u, f)

Proof of Theorem aceq3lem
Dummy variables  h  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . . . 6  |-  y  e. 
_V
21rnex 6733 . . . . 5  |-  ran  y  e.  _V
32pwex 4639 . . . 4  |-  ~P ran  y  e.  _V
4 raleq 3054 . . . . 5  |-  ( x  =  ~P ran  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
54exbidv 1715 . . . 4  |-  ( x  =  ~P ran  y  ->  ( E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  E. f A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
63, 5spcv 3200 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
7 aceq3lem.1 . . . . . . 7  |-  F  =  ( w  e.  dom  y  |->  ( f `  { u  |  w
y u } ) )
8 df-mpt 4517 . . . . . . 7  |-  ( w  e.  dom  y  |->  ( f `  { u  |  w y u }
) )  =  { <. w ,  h >.  |  ( w  e.  dom  y  /\  h  =  ( f `  { u  |  w y u }
) ) }
97, 8eqtri 2486 . . . . . 6  |-  F  =  { <. w ,  h >.  |  ( w  e. 
dom  y  /\  h  =  ( f `  { u  |  w
y u } ) ) }
10 vex 3112 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
1110eldm 5210 . . . . . . . . . . . . . 14  |-  ( w  e.  dom  y  <->  E. u  w y u )
12 abn0 3813 . . . . . . . . . . . . . 14  |-  ( { u  |  w y u }  =/=  (/)  <->  E. u  w y u )
1311, 12bitr4i 252 . . . . . . . . . . . . 13  |-  ( w  e.  dom  y  <->  { u  |  w y u }  =/=  (/) )
14 vex 3112 . . . . . . . . . . . . . . . . 17  |-  u  e. 
_V
1510, 14brelrn 5243 . . . . . . . . . . . . . . . 16  |-  ( w y u  ->  u  e.  ran  y )
1615abssi 3571 . . . . . . . . . . . . . . 15  |-  { u  |  w y u }  C_ 
ran  y
172elpw2 4620 . . . . . . . . . . . . . . 15  |-  ( { u  |  w y u }  e.  ~P ran  y  <->  { u  |  w y u }  C_  ran  y )
1816, 17mpbir 209 . . . . . . . . . . . . . 14  |-  { u  |  w y u }  e.  ~P ran  y
19 neeq1 2738 . . . . . . . . . . . . . . . 16  |-  ( z  =  { u  |  w y u }  ->  ( z  =/=  (/)  <->  { u  |  w y u }  =/=  (/) ) )
20 fveq2 5872 . . . . . . . . . . . . . . . . 17  |-  ( z  =  { u  |  w y u }  ->  ( f `  z
)  =  ( f `
 { u  |  w y u }
) )
21 id 22 . . . . . . . . . . . . . . . . 17  |-  ( z  =  { u  |  w y u }  ->  z  =  { u  |  w y u }
)
2220, 21eleq12d 2539 . . . . . . . . . . . . . . . 16  |-  ( z  =  { u  |  w y u }  ->  ( ( f `  z )  e.  z  <-> 
( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) )
2319, 22imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( z  =  { u  |  w y u }  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( { u  |  w y u }  =/=  (/)  ->  ( f `  { u  |  w y u } )  e.  { u  |  w y u }
) ) )
2423rspcv 3206 . . . . . . . . . . . . . 14  |-  ( { u  |  w y u }  e.  ~P ran  y  ->  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  ( { u  |  w
y u }  =/=  (/) 
->  ( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) ) )
2518, 24ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  ( { u  |  w
y u }  =/=  (/) 
->  ( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) )
2613, 25syl5bi 217 . . . . . . . . . . . 12  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
w  e.  dom  y  ->  ( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) )
2726imp 429 . . . . . . . . . . 11  |-  ( ( A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z )  /\  w  e. 
dom  y )  -> 
( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } )
28 fvex 5882 . . . . . . . . . . . 12  |-  ( f `
 { u  |  w y u }
)  e.  _V
29 breq2 4460 . . . . . . . . . . . 12  |-  ( z  =  ( f `  { u  |  w
y u } )  ->  ( w y z  <->  w y ( f `  { u  |  w y u }
) ) )
30 breq2 4460 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
w y u  <->  w y
z ) )
3130cbvabv 2600 . . . . . . . . . . . 12  |-  { u  |  w y u }  =  { z  |  w y z }
3228, 29, 31elab2 3249 . . . . . . . . . . 11  |-  ( ( f `  { u  |  w y u }
)  e.  { u  |  w y u }  <->  w y ( f `  { u  |  w
y u } ) )
3327, 32sylib 196 . . . . . . . . . 10  |-  ( ( A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z )  /\  w  e. 
dom  y )  ->  w y ( f `
 { u  |  w y u }
) )
34 breq2 4460 . . . . . . . . . 10  |-  ( h  =  ( f `  { u  |  w
y u } )  ->  ( w y h  <->  w y ( f `  { u  |  w y u }
) ) )
3533, 34syl5ibrcom 222 . . . . . . . . 9  |-  ( ( A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z )  /\  w  e. 
dom  y )  -> 
( h  =  ( f `  { u  |  w y u }
)  ->  w y
h ) )
3635expimpd 603 . . . . . . . 8  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( w  e.  dom  y  /\  h  =  ( f `  { u  |  w y u }
) )  ->  w
y h ) )
3736ssopab2dv 4785 . . . . . . 7  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  { <. w ,  h >.  |  ( w  e.  dom  y  /\  h  =  (
f `  { u  |  w y u }
) ) }  C_  {
<. w ,  h >.  |  w y h }
)
38 opabss 4518 . . . . . . 7  |-  { <. w ,  h >.  |  w y h }  C_  y
3937, 38syl6ss 3511 . . . . . 6  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  { <. w ,  h >.  |  ( w  e.  dom  y  /\  h  =  (
f `  { u  |  w y u }
) ) }  C_  y )
409, 39syl5eqss 3543 . . . . 5  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  F  C_  y )
4128, 7fnmpti 5715 . . . . 5  |-  F  Fn  dom  y
421ssex 4600 . . . . . . 7  |-  ( F 
C_  y  ->  F  e.  _V )
4342adantr 465 . . . . . 6  |-  ( ( F  C_  y  /\  F  Fn  dom  y )  ->  F  e.  _V )
44 sseq1 3520 . . . . . . . 8  |-  ( g  =  F  ->  (
g  C_  y  <->  F  C_  y
) )
45 fneq1 5675 . . . . . . . 8  |-  ( g  =  F  ->  (
g  Fn  dom  y  <->  F  Fn  dom  y ) )
4644, 45anbi12d 710 . . . . . . 7  |-  ( g  =  F  ->  (
( g  C_  y  /\  g  Fn  dom  y )  <->  ( F  C_  y  /\  F  Fn  dom  y ) ) )
4746spcegv 3195 . . . . . 6  |-  ( F  e.  _V  ->  (
( F  C_  y  /\  F  Fn  dom  y )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) ) )
4843, 47mpcom 36 . . . . 5  |-  ( ( F  C_  y  /\  F  Fn  dom  y )  ->  E. g ( g 
C_  y  /\  g  Fn  dom  y ) )
4940, 41, 48sylancl 662 . . . 4  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) )
5049exlimiv 1723 . . 3  |-  ( E. f A. z  e. 
~P  ran  y (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) )
516, 50syl 16 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) )
52 sseq1 3520 . . . 4  |-  ( g  =  f  ->  (
g  C_  y  <->  f  C_  y ) )
53 fneq1 5675 . . . 4  |-  ( g  =  f  ->  (
g  Fn  dom  y  <->  f  Fn  dom  y ) )
5452, 53anbi12d 710 . . 3  |-  ( g  =  f  ->  (
( g  C_  y  /\  g  Fn  dom  y )  <->  ( f  C_  y  /\  f  Fn 
dom  y ) ) )
5554cbvexv 2025 . 2  |-  ( E. g ( g  C_  y  /\  g  Fn  dom  y )  <->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
5651, 55sylib 196 1  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   class class class wbr 4456   {copab 4514    |-> cmpt 4515   dom cdm 5008   ran crn 5009    Fn wfn 5589   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602
This theorem is referenced by:  dfac3  8519
  Copyright terms: Public domain W3C validator