MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq2 Structured version   Unicode version

Theorem aceq2 8401
Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
aceq2  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
Distinct variable group:    x, y, z, w, v, u

Proof of Theorem aceq2
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 df-ral 2804 . . . . 5  |-  ( A. t  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. t ( t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2 19.23v 1922 . . . . 5  |-  ( A. t ( t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )  <->  ( E. t  t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
31, 2bitri 249 . . . 4  |-  ( A. t  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  ( E. t  t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
4 biidd 237 . . . . 5  |-  ( w  =  t  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
54cbvralv 3053 . . . 4  |-  ( A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. t  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
6 n0 3755 . . . . 5  |-  ( z  =/=  (/)  <->  E. t  t  e.  z )
7 eleq2 2527 . . . . . . . . 9  |-  ( v  =  u  ->  (
z  e.  v  <->  z  e.  u ) )
8 eleq2 2527 . . . . . . . . 9  |-  ( v  =  u  ->  (
w  e.  v  <->  w  e.  u ) )
97, 8anbi12d 710 . . . . . . . 8  |-  ( v  =  u  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  u  /\  w  e.  u ) ) )
109cbvrexv 3054 . . . . . . 7  |-  ( E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E. u  e.  y  ( z  e.  u  /\  w  e.  u )
)
1110reubii 3013 . . . . . 6  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  <->  E! w  e.  z  E. u  e.  y  (
z  e.  u  /\  w  e.  u )
)
12 eleq1 2526 . . . . . . . . 9  |-  ( w  =  v  ->  (
w  e.  u  <->  v  e.  u ) )
1312anbi2d 703 . . . . . . . 8  |-  ( w  =  v  ->  (
( z  e.  u  /\  w  e.  u
)  <->  ( z  e.  u  /\  v  e.  u ) ) )
1413rexbidv 2868 . . . . . . 7  |-  ( w  =  v  ->  ( E. u  e.  y 
( z  e.  u  /\  w  e.  u
)  <->  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
1514cbvreuv 3055 . . . . . 6  |-  ( E! w  e.  z  E. u  e.  y  (
z  e.  u  /\  w  e.  u )  <->  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
1611, 15bitri 249 . . . . 5  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  <->  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
176, 16imbi12i 326 . . . 4  |-  ( ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  ( E. t 
t  e.  z  ->  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
) ) )
183, 5, 173bitr4i 277 . . 3  |-  ( A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
1918ralbii 2839 . 2  |-  ( A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
2019exbii 1635 1  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368   E.wex 1587    =/= wne 2648   A.wral 2799   E.wrex 2800   E!wreu 2801   (/)c0 3746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-v 3080  df-dif 3440  df-nul 3747
This theorem is referenced by:  dfac7  8413  ac3  8743
  Copyright terms: Public domain W3C validator