MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac9 Structured version   Unicode version

Theorem ac9 8894
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1  |-  A  e. 
_V
ac6c4.2  |-  B  e. 
_V
Assertion
Ref Expression
ac9  |-  ( A. x  e.  A  B  =/=  (/)  <->  X_ x  e.  A  B  =/=  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem ac9
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ac6c4.1 . . . 4  |-  A  e. 
_V
2 ac6c4.2 . . . 4  |-  B  e. 
_V
31, 2ac6c4 8892 . . 3  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
4 n0 3747 . . . 4  |-  ( X_ x  e.  A  B  =/=  (/)  <->  E. f  f  e.  X_ x  e.  A  B )
5 vex 3061 . . . . . 6  |-  f  e. 
_V
65elixp 7513 . . . . 5  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
76exbii 1688 . . . 4  |-  ( E. f  f  e.  X_ x  e.  A  B  <->  E. f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
) )
84, 7bitr2i 250 . . 3  |-  ( E. f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
)  <->  X_ x  e.  A  B  =/=  (/) )
93, 8sylib 196 . 2  |-  ( A. x  e.  A  B  =/=  (/)  ->  X_ x  e.  A  B  =/=  (/) )
10 ixpn0 7538 . 2  |-  ( X_ x  e.  A  B  =/=  (/)  ->  A. x  e.  A  B  =/=  (/) )
119, 10impbii 188 1  |-  ( A. x  e.  A  B  =/=  (/)  <->  X_ x  e.  A  B  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2753   _Vcvv 3058   (/)c0 3737    Fn wfn 5563   ` cfv 5568   X_cixp 7506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-ac2 8874
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-wrecs 7012  df-recs 7074  df-ixp 7507  df-en 7554  df-card 8351  df-ac 8528
This theorem is referenced by:  konigthlem  8974
  Copyright terms: Public domain W3C validator