MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s Structured version   Unicode version

Theorem ac6s 8756
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 8203, we derive this strong version of ac6 8752 that doesn't require  B to be a set. (Contributed by NM, 4-Feb-2004.)
Hypotheses
Ref Expression
ac6s.1  |-  A  e. 
_V
ac6s.2  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6s  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    x, y, B, f    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)

Proof of Theorem ac6s
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ac6s.1 . . 3  |-  A  e. 
_V
21bnd2 8203 . 2  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. z ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph ) )
3 vex 3073 . . . . 5  |-  z  e. 
_V
4 ac6s.2 . . . . 5  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
51, 3, 4ac6 8752 . . . 4  |-  ( A. x  e.  A  E. y  e.  z  ph  ->  E. f ( f : A --> z  /\  A. x  e.  A  ps ) )
65anim2i 569 . . 3  |-  ( ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph )  ->  ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) ) )
76eximi 1626 . 2  |-  ( E. z ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph )  ->  E. z ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) ) )
8 fss 5667 . . . . . . 7  |-  ( ( f : A --> z  /\  z  C_  B )  -> 
f : A --> B )
98expcom 435 . . . . . 6  |-  ( z 
C_  B  ->  (
f : A --> z  -> 
f : A --> B ) )
109anim1d 564 . . . . 5  |-  ( z 
C_  B  ->  (
( f : A --> z  /\  A. x  e.  A  ps )  -> 
( f : A --> B  /\  A. x  e.  A  ps ) ) )
1110eximdv 1677 . . . 4  |-  ( z 
C_  B  ->  ( E. f ( f : A --> z  /\  A. x  e.  A  ps )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) ) )
1211imp 429 . . 3  |-  ( ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
1312exlimiv 1689 . 2  |-  ( E. z ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
142, 7, 133syl 20 1  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   A.wral 2795   E.wrex 2796   _Vcvv 3070    C_ wss 3428   -->wf 5514   ` cfv 5518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-reg 7910  ax-inf2 7950  ax-ac2 8735
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-om 6579  df-recs 6934  df-rdg 6968  df-en 7413  df-r1 8074  df-rank 8075  df-card 8212  df-ac 8389
This theorem is referenced by:  ac6n  8757  ac6s2  8758  ac6sg  8760  ac6sf  8761  nmounbseqiOLD  24315
  Copyright terms: Public domain W3C validator