MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6num Structured version   Unicode version

Theorem ac6num 8898
Description: A version of ac6 8899 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
ac6num.1  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6num  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    y, f, B, x    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)    V( x, y, f)

Proof of Theorem ac6num
Dummy variables  g 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 4323 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  { y  e.  B  |  ph }
21nfel1 2598 . . . . . . . 8  |-  F/ x U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card
3 ssiun2 4336 . . . . . . . . 9  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  C_  U_ x  e.  A  { y  e.  B  |  ph }
)
4 ssexg 4562 . . . . . . . . . 10  |-  ( ( { y  e.  B  |  ph }  C_  U_ x  e.  A  { y  e.  B  |  ph }  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )  ->  { y  e.  B  |  ph }  e.  _V )
54expcom 436 . . . . . . . . 9  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  -> 
( { y  e.  B  |  ph }  C_ 
U_ x  e.  A  { y  e.  B  |  ph }  ->  { y  e.  B  |  ph }  e.  _V )
)
63, 5syl5 33 . . . . . . . 8  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  -> 
( x  e.  A  ->  { y  e.  B  |  ph }  e.  _V ) )
72, 6ralrimi 2823 . . . . . . 7  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  A. x  e.  A  { y  e.  B  |  ph }  e.  _V )
8 dfiun2g 4325 . . . . . . 7  |-  ( A. x  e.  A  {
y  e.  B  |  ph }  e.  _V  ->  U_ x  e.  A  {
y  e.  B  |  ph }  =  U. {
z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } } )
97, 8syl 17 . . . . . 6  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U_ x  e.  A  { y  e.  B  |  ph }  =  U. { z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } } )
10 eqid 2420 . . . . . . . 8  |-  ( x  e.  A  |->  { y  e.  B  |  ph } )  =  ( x  e.  A  |->  { y  e.  B  |  ph } )
1110rnmpt 5091 . . . . . . 7  |-  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  =  {
z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } }
1211unieqi 4222 . . . . . 6  |-  U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  = 
U. { z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } }
139, 12syl6eqr 2479 . . . . 5  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U_ x  e.  A  { y  e.  B  |  ph }  =  U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) )
14 id 23 . . . . 5  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )
1513, 14eqeltrrd 2509 . . . 4  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U. ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  e.  dom  card )
16153ad2ant2 1027 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  U. ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  e.  dom  card )
17 simp3 1007 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  A. x  e.  A  E. y  e.  B  ph )
18 necom 2691 . . . . . . . 8  |-  ( { y  e.  B  |  ph }  =/=  (/)  <->  (/)  =/=  {
y  e.  B  |  ph } )
19 rabn0 3779 . . . . . . . 8  |-  ( { y  e.  B  |  ph }  =/=  (/)  <->  E. y  e.  B  ph )
20 df-ne 2618 . . . . . . . 8  |-  ( (/)  =/=  { y  e.  B  |  ph }  <->  -.  (/)  =  {
y  e.  B  |  ph } )
2118, 19, 203bitr3i 278 . . . . . . 7  |-  ( E. y  e.  B  ph  <->  -.  (/)  =  { y  e.  B  |  ph }
)
2221ralbii 2854 . . . . . 6  |-  ( A. x  e.  A  E. y  e.  B  ph  <->  A. x  e.  A  -.  (/)  =  {
y  e.  B  |  ph } )
23 ralnex 2869 . . . . . 6  |-  ( A. x  e.  A  -.  (/)  =  { y  e.  B  |  ph }  <->  -. 
E. x  e.  A  (/)  =  { y  e.  B  |  ph }
)
2422, 23bitri 252 . . . . 5  |-  ( A. x  e.  A  E. y  e.  B  ph  <->  -.  E. x  e.  A  (/)  =  {
y  e.  B  |  ph } )
2517, 24sylib 199 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  -.  E. x  e.  A  (/)  =  {
y  e.  B  |  ph } )
26 0ex 4548 . . . . 5  |-  (/)  e.  _V
2710elrnmpt 5092 . . . . 5  |-  ( (/)  e.  _V  ->  ( (/)  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  <->  E. x  e.  A  (/)  =  {
y  e.  B  |  ph } ) )
2826, 27ax-mp 5 . . . 4  |-  ( (/)  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  <->  E. x  e.  A  (/)  =  { y  e.  B  |  ph }
)
2925, 28sylnibr 306 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  -.  (/)  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) )
30 ac5num 8456 . . 3  |-  ( ( U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  e.  dom  card  /\  -.  (/)  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) )  ->  E. g ( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph }
) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z ) )
3116, 29, 30syl2anc 665 . 2  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  E. g
( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) --> U.
ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph }
) ( g `  z )  e.  z ) )
32 ffn 5737 . . . . . 6  |-  ( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  -> 
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) )
3332anim1i 570 . . . . 5  |-  ( ( g : ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z ) )
3473ad2ant2 1027 . . . . . . 7  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  A. x  e.  A  { y  e.  B  |  ph }  e.  _V )
35 fveq2 5872 . . . . . . . . 9  |-  ( z  =  { y  e.  B  |  ph }  ->  ( g `  z
)  =  ( g `
 { y  e.  B  |  ph }
) )
36 id 23 . . . . . . . . 9  |-  ( z  =  { y  e.  B  |  ph }  ->  z  =  { y  e.  B  |  ph } )
3735, 36eleq12d 2502 . . . . . . . 8  |-  ( z  =  { y  e.  B  |  ph }  ->  ( ( g `  z )  e.  z  <-> 
( g `  {
y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph } ) )
3810, 37ralrnmpt 6037 . . . . . . 7  |-  ( A. x  e.  A  {
y  e.  B  |  ph }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `  z )  e.  z  <->  A. x  e.  A  ( g `  { y  e.  B  |  ph } )  e. 
{ y  e.  B  |  ph } ) )
3934, 38syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z  <->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph } ) )
4039anbi2d 708 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  <->  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  /\  A. x  e.  A  ( g `  { y  e.  B  |  ph } )  e. 
{ y  e.  B  |  ph } ) ) )
4133, 40syl5ib 222 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g : ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) ) )
423sseld 3460 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
( g `  {
y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  ->  ( g `  { y  e.  B  |  ph } )  e. 
U_ x  e.  A  { y  e.  B  |  ph } ) )
4342ralimia 2814 . . . . . . . . . 10  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph }  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } )
4443ad2antll 733 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } )
45 nfv 1751 . . . . . . . . . 10  |-  F/ z ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph }
46 nfcsb1v 3408 . . . . . . . . . . 11  |-  F/_ x [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )
4746, 1nfel 2595 . . . . . . . . . 10  |-  F/ x [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph }
48 csbeq1a 3401 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
g `  { y  e.  B  |  ph }
)  =  [_ z  /  x ]_ ( g `
 { y  e.  B  |  ph }
) )
4948eleq1d 2489 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph }  <->  [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } ) )
5045, 47, 49cbvral 3049 . . . . . . . . 9  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  U_ x  e.  A  { y  e.  B  |  ph }  <->  A. z  e.  A  [_ z  /  x ]_ (
g `  { y  e.  B  |  ph }
)  e.  U_ x  e.  A  { y  e.  B  |  ph }
)
5144, 50sylib 199 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. z  e.  A  [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } )
52 nfcv 2582 . . . . . . . . . 10  |-  F/_ z
( g `  {
y  e.  B  |  ph } )
5352, 46, 48cbvmpt 4508 . . . . . . . . 9  |-  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  =  ( z  e.  A  |->  [_ z  /  x ]_ (
g `  { y  e.  B  |  ph }
) )
5453fmpt 6049 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  x ]_ ( g `
 { y  e.  B  |  ph }
)  e.  U_ x  e.  A  { y  e.  B  |  ph }  <->  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> U_ x  e.  A  { y  e.  B  |  ph } )
5551, 54sylib 199 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) : A --> U_ x  e.  A  { y  e.  B  |  ph } )
56 simpl1 1008 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A  e.  V )
57 simpl2 1009 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )
58 fex2 6753 . . . . . . 7  |-  ( ( ( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) : A --> U_ x  e.  A  { y  e.  B  |  ph }  /\  A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )  ->  (
x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  e. 
_V )
5955, 56, 57, 58syl3anc 1264 . . . . . 6  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) )  e. 
_V )
60 ssrab2 3543 . . . . . . . . . . 11  |-  { y  e.  B  |  ph }  C_  B
6160sseli 3457 . . . . . . . . . 10  |-  ( ( g `  { y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  ->  ( g `  { y  e.  B  |  ph } )  e.  B )
6261ralimi 2816 . . . . . . . . 9  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph }  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  B
)
6362ad2antll 733 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  B
)
64 eqid 2420 . . . . . . . . 9  |-  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )
6564fmpt 6049 . . . . . . . 8  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  B  <->  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) ) : A --> B )
6663, 65sylib 199 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) : A --> B )
67 nfcv 2582 . . . . . . . . . . 11  |-  F/_ y B
6867elrabsf 3335 . . . . . . . . . 10  |-  ( ( g `  { y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  <->  ( ( g `
 { y  e.  B  |  ph }
)  e.  B  /\  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) )
6968simprbi 465 . . . . . . . . 9  |-  ( ( g `  { y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  ->  [. ( g `
 { y  e.  B  |  ph }
)  /  y ]. ph )
7069ralimi 2816 . . . . . . . 8  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph }  ->  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph )
7170ad2antll 733 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph )
7266, 71jca 534 . . . . . 6  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> B  /\  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) )
73 feq1 5719 . . . . . . . 8  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( f : A --> B  <->  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) ) : A --> B ) )
74 nfmpt1 4506 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) )
7574nfeq2 2599 . . . . . . . . 9  |-  F/ x  f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )
76 fvex 5882 . . . . . . . . . . 11  |-  ( f `
 x )  e. 
_V
77 ac6num.1 . . . . . . . . . . 11  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
7876, 77sbcie 3331 . . . . . . . . . 10  |-  ( [. ( f `  x
)  /  y ]. ph  <->  ps )
79 fveq1 5871 . . . . . . . . . . . 12  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( f `  x )  =  ( ( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) `  x ) )
80 fvex 5882 . . . . . . . . . . . . 13  |-  ( g `
 { y  e.  B  |  ph }
)  e.  _V
8164fvmpt2 5964 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  ( g `  {
y  e.  B  |  ph } )  e.  _V )  ->  ( ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) ) `  x
)  =  ( g `
 { y  e.  B  |  ph }
) )
8280, 81mpan2 675 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  (
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) `  x )  =  ( g `  { y  e.  B  |  ph } ) )
8379, 82sylan9eq 2481 . . . . . . . . . . 11  |-  ( ( f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  /\  x  e.  A )  ->  (
f `  x )  =  ( g `  { y  e.  B  |  ph } ) )
8483sbceq1d 3301 . . . . . . . . . 10  |-  ( ( f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  /\  x  e.  A )  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) )
8578, 84syl5bbr 262 . . . . . . . . 9  |-  ( ( f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  /\  x  e.  A )  ->  ( ps 
<-> 
[. ( g `  { y  e.  B  |  ph } )  / 
y ]. ph ) )
8675, 85ralbida 2856 . . . . . . . 8  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  [. ( g `
 { y  e.  B  |  ph }
)  /  y ]. ph ) )
8773, 86anbi12d 715 . . . . . . 7  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( ( f : A --> B  /\  A. x  e.  A  ps ) 
<->  ( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> B  /\  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) ) )
8887spcegv 3164 . . . . . 6  |-  ( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  e. 
_V  ->  ( ( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> B  /\  A. x  e.  A  [. (
g `  { y  e.  B  |  ph }
)  /  y ]. ph )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
8959, 72, 88sylc 62 . . . . 5  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
9089ex 435 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9141, 90syld 45 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g : ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9291exlimdv 1768 . 2  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( E. g ( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph }
) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9331, 92mpd 15 1  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1867   {cab 2405    =/= wne 2616   A.wral 2773   E.wrex 2774   {crab 2777   _Vcvv 3078   [.wsbc 3296   [_csb 3392    C_ wss 3433   (/)c0 3758   U.cuni 4213   U_ciun 4293    |-> cmpt 4475   dom cdm 4845   ran crn 4846    Fn wfn 5587   -->wf 5588   ` cfv 5592   cardccrd 8359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-ord 5436  df-on 5437  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-en 7569  df-card 8363
This theorem is referenced by:  ac6  8899  ptcmplem3  21006  poimirlem32  31720
  Copyright terms: Public domain W3C validator