MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Unicode version

Theorem ac6c4 8918
Description: Equivalent of Axiom of Choice.  B is a collection  B ( x ) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1  |-  A  e. 
_V
ac6c4.2  |-  B  e. 
_V
Assertion
Ref Expression
ac6c4  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
Distinct variable groups:    A, f, x    B, f
Allowed substitution hint:    B( x)

Proof of Theorem ac6c4
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1755 . . . 4  |-  F/ z  B  =/=  (/)
2 nfcsb1v 3411 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
3 nfcv 2580 . . . . 5  |-  F/_ x (/)
42, 3nfne 2752 . . . 4  |-  F/ x [_ z  /  x ]_ B  =/=  (/)
5 csbeq1a 3404 . . . . 5  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
65neeq1d 2697 . . . 4  |-  ( x  =  z  ->  ( B  =/=  (/)  <->  [_ z  /  x ]_ B  =/=  (/) ) )
71, 4, 6cbvral 3050 . . 3  |-  ( A. x  e.  A  B  =/=  (/)  <->  A. z  e.  A  [_ z  /  x ]_ B  =/=  (/) )
8 n0 3771 . . . . 5  |-  ( [_ z  /  x ]_ B  =/=  (/)  <->  E. y  y  e. 
[_ z  /  x ]_ B )
9 nfv 1755 . . . . . 6  |-  F/ y  z  e.  A
10 nfre1 2883 . . . . . 6  |-  F/ y E. y  e.  U_  x  e.  A  B
y  e.  [_ z  /  x ]_ B
112nfel2 2598 . . . . . . . . . 10  |-  F/ x  y  e.  [_ z  /  x ]_ B
125eleq2d 2492 . . . . . . . . . 10  |-  ( x  =  z  ->  (
y  e.  B  <->  y  e.  [_ z  /  x ]_ B ) )
1311, 12rspce 3177 . . . . . . . . 9  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  ->  E. x  e.  A  y  e.  B )
14 eliun 4304 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
1513, 14sylibr 215 . . . . . . . 8  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  -> 
y  e.  U_ x  e.  A  B )
16 rspe 2880 . . . . . . . 8  |-  ( ( y  e.  U_ x  e.  A  B  /\  y  e.  [_ z  /  x ]_ B )  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
1715, 16sylancom 671 . . . . . . 7  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
1817ex 435 . . . . . 6  |-  ( z  e.  A  ->  (
y  e.  [_ z  /  x ]_ B  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B ) )
199, 10, 18exlimd 1974 . . . . 5  |-  ( z  e.  A  ->  ( E. y  y  e.  [_ z  /  x ]_ B  ->  E. y  e.  U_  x  e.  A  B
y  e.  [_ z  /  x ]_ B ) )
208, 19syl5bi 220 . . . 4  |-  ( z  e.  A  ->  ( [_ z  /  x ]_ B  =/=  (/)  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B
) )
2120ralimia 2813 . . 3  |-  ( A. z  e.  A  [_ z  /  x ]_ B  =/=  (/)  ->  A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
227, 21sylbi 198 . 2  |-  ( A. x  e.  A  B  =/=  (/)  ->  A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B
)
23 ac6c4.1 . . 3  |-  A  e. 
_V
24 ac6c4.2 . . . 4  |-  B  e. 
_V
2523, 24iunex 6787 . . 3  |-  U_ x  e.  A  B  e.  _V
26 eleq1 2495 . . 3  |-  ( y  =  ( f `  z )  ->  (
y  e.  [_ z  /  x ]_ B  <->  ( f `  z )  e.  [_ z  /  x ]_ B
) )
2723, 25, 26ac6 8917 . 2  |-  ( A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e. 
[_ z  /  x ]_ B  ->  E. f
( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z
)  e.  [_ z  /  x ]_ B ) )
28 ffn 5746 . . . 4  |-  ( f : A --> U_ x  e.  A  B  ->  f  Fn  A )
29 nfv 1755 . . . . . 6  |-  F/ z ( f `  x
)  e.  B
302nfel2 2598 . . . . . 6  |-  F/ x
( f `  z
)  e.  [_ z  /  x ]_ B
31 fveq2 5881 . . . . . . 7  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
3231, 5eleq12d 2501 . . . . . 6  |-  ( x  =  z  ->  (
( f `  x
)  e.  B  <->  ( f `  z )  e.  [_ z  /  x ]_ B
) )
3329, 30, 32cbvral 3050 . . . . 5  |-  ( A. x  e.  A  (
f `  x )  e.  B  <->  A. z  e.  A  ( f `  z
)  e.  [_ z  /  x ]_ B )
3433biimpri 209 . . . 4  |-  ( A. z  e.  A  (
f `  z )  e.  [_ z  /  x ]_ B  ->  A. x  e.  A  ( f `  x )  e.  B
)
3528, 34anim12i 568 . . 3  |-  ( ( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z )  e.  [_ z  /  x ]_ B )  -> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
3635eximi 1701 . 2  |-  ( E. f ( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z )  e.  [_ z  /  x ]_ B
)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
3722, 27, 363syl 18 1  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   E.wex 1657    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772   _Vcvv 3080   [_csb 3395   (/)c0 3761   U_ciun 4299    Fn wfn 5596   -->wf 5597   ` cfv 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-ac2 8900
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-wrecs 7039  df-recs 7101  df-en 7581  df-card 8381  df-ac 8554
This theorem is referenced by:  ac6c5  8919  ac9  8920
  Copyright terms: Public domain W3C validator