MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Unicode version

Theorem ac6c4 8892
Description: Equivalent of Axiom of Choice.  B is a collection  B ( x ) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1  |-  A  e. 
_V
ac6c4.2  |-  B  e. 
_V
Assertion
Ref Expression
ac6c4  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
Distinct variable groups:    A, f, x    B, f
Allowed substitution hint:    B( x)

Proof of Theorem ac6c4
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1728 . . . 4  |-  F/ z  B  =/=  (/)
2 nfcsb1v 3388 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
3 nfcv 2564 . . . . 5  |-  F/_ x (/)
42, 3nfne 2734 . . . 4  |-  F/ x [_ z  /  x ]_ B  =/=  (/)
5 csbeq1a 3381 . . . . 5  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
65neeq1d 2680 . . . 4  |-  ( x  =  z  ->  ( B  =/=  (/)  <->  [_ z  /  x ]_ B  =/=  (/) ) )
71, 4, 6cbvral 3029 . . 3  |-  ( A. x  e.  A  B  =/=  (/)  <->  A. z  e.  A  [_ z  /  x ]_ B  =/=  (/) )
8 n0 3747 . . . . 5  |-  ( [_ z  /  x ]_ B  =/=  (/)  <->  E. y  y  e. 
[_ z  /  x ]_ B )
9 nfv 1728 . . . . . 6  |-  F/ y  z  e.  A
10 nfre1 2864 . . . . . 6  |-  F/ y E. y  e.  U_  x  e.  A  B
y  e.  [_ z  /  x ]_ B
112nfel2 2582 . . . . . . . . . 10  |-  F/ x  y  e.  [_ z  /  x ]_ B
125eleq2d 2472 . . . . . . . . . 10  |-  ( x  =  z  ->  (
y  e.  B  <->  y  e.  [_ z  /  x ]_ B ) )
1311, 12rspce 3154 . . . . . . . . 9  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  ->  E. x  e.  A  y  e.  B )
14 eliun 4275 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
1513, 14sylibr 212 . . . . . . . 8  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  -> 
y  e.  U_ x  e.  A  B )
16 rspe 2861 . . . . . . . 8  |-  ( ( y  e.  U_ x  e.  A  B  /\  y  e.  [_ z  /  x ]_ B )  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
1715, 16sylancom 665 . . . . . . 7  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
1817ex 432 . . . . . 6  |-  ( z  e.  A  ->  (
y  e.  [_ z  /  x ]_ B  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B ) )
199, 10, 18exlimd 1942 . . . . 5  |-  ( z  e.  A  ->  ( E. y  y  e.  [_ z  /  x ]_ B  ->  E. y  e.  U_  x  e.  A  B
y  e.  [_ z  /  x ]_ B ) )
208, 19syl5bi 217 . . . 4  |-  ( z  e.  A  ->  ( [_ z  /  x ]_ B  =/=  (/)  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B
) )
2120ralimia 2794 . . 3  |-  ( A. z  e.  A  [_ z  /  x ]_ B  =/=  (/)  ->  A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
227, 21sylbi 195 . 2  |-  ( A. x  e.  A  B  =/=  (/)  ->  A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B
)
23 ac6c4.1 . . 3  |-  A  e. 
_V
24 ac6c4.2 . . . 4  |-  B  e. 
_V
2523, 24iunex 6763 . . 3  |-  U_ x  e.  A  B  e.  _V
26 eleq1 2474 . . 3  |-  ( y  =  ( f `  z )  ->  (
y  e.  [_ z  /  x ]_ B  <->  ( f `  z )  e.  [_ z  /  x ]_ B
) )
2723, 25, 26ac6 8891 . 2  |-  ( A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e. 
[_ z  /  x ]_ B  ->  E. f
( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z
)  e.  [_ z  /  x ]_ B ) )
28 ffn 5713 . . . 4  |-  ( f : A --> U_ x  e.  A  B  ->  f  Fn  A )
29 nfv 1728 . . . . . 6  |-  F/ z ( f `  x
)  e.  B
302nfel2 2582 . . . . . 6  |-  F/ x
( f `  z
)  e.  [_ z  /  x ]_ B
31 fveq2 5848 . . . . . . 7  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
3231, 5eleq12d 2484 . . . . . 6  |-  ( x  =  z  ->  (
( f `  x
)  e.  B  <->  ( f `  z )  e.  [_ z  /  x ]_ B
) )
3329, 30, 32cbvral 3029 . . . . 5  |-  ( A. x  e.  A  (
f `  x )  e.  B  <->  A. z  e.  A  ( f `  z
)  e.  [_ z  /  x ]_ B )
3433biimpri 206 . . . 4  |-  ( A. z  e.  A  (
f `  z )  e.  [_ z  /  x ]_ B  ->  A. x  e.  A  ( f `  x )  e.  B
)
3528, 34anim12i 564 . . 3  |-  ( ( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z )  e.  [_ z  /  x ]_ B )  -> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
3635eximi 1677 . 2  |-  ( E. f ( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z )  e.  [_ z  /  x ]_ B
)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
3722, 27, 363syl 20 1  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   _Vcvv 3058   [_csb 3372   (/)c0 3737   U_ciun 4270    Fn wfn 5563   -->wf 5564   ` cfv 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-ac2 8874
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-wrecs 7012  df-recs 7074  df-en 7554  df-card 8351  df-ac 8528
This theorem is referenced by:  ac6c5  8893  ac9  8894
  Copyright terms: Public domain W3C validator