MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Unicode version

Theorem ac6c4 8850
Description: Equivalent of Axiom of Choice.  B is a collection  B ( x ) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1  |-  A  e. 
_V
ac6c4.2  |-  B  e. 
_V
Assertion
Ref Expression
ac6c4  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
Distinct variable groups:    A, f, x    B, f
Allowed substitution hint:    B( x)

Proof of Theorem ac6c4
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1678 . . . 4  |-  F/ z  B  =/=  (/)
2 nfcsb1v 3444 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
3 nfcv 2622 . . . . 5  |-  F/_ x (/)
42, 3nfne 2791 . . . 4  |-  F/ x [_ z  /  x ]_ B  =/=  (/)
5 csbeq1a 3437 . . . . 5  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
65neeq1d 2737 . . . 4  |-  ( x  =  z  ->  ( B  =/=  (/)  <->  [_ z  /  x ]_ B  =/=  (/) ) )
71, 4, 6cbvral 3077 . . 3  |-  ( A. x  e.  A  B  =/=  (/)  <->  A. z  e.  A  [_ z  /  x ]_ B  =/=  (/) )
8 n0 3787 . . . . 5  |-  ( [_ z  /  x ]_ B  =/=  (/)  <->  E. y  y  e. 
[_ z  /  x ]_ B )
9 nfv 1678 . . . . . 6  |-  F/ y  z  e.  A
10 nfre1 2918 . . . . . 6  |-  F/ y E. y  e.  U_  x  e.  A  B
y  e.  [_ z  /  x ]_ B
112nfel2 2640 . . . . . . . . . 10  |-  F/ x  y  e.  [_ z  /  x ]_ B
125eleq2d 2530 . . . . . . . . . 10  |-  ( x  =  z  ->  (
y  e.  B  <->  y  e.  [_ z  /  x ]_ B ) )
1311, 12rspce 3202 . . . . . . . . 9  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  ->  E. x  e.  A  y  e.  B )
14 eliun 4323 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
1513, 14sylibr 212 . . . . . . . 8  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  -> 
y  e.  U_ x  e.  A  B )
16 rspe 2915 . . . . . . . 8  |-  ( ( y  e.  U_ x  e.  A  B  /\  y  e.  [_ z  /  x ]_ B )  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
1715, 16sylancom 667 . . . . . . 7  |-  ( ( z  e.  A  /\  y  e.  [_ z  /  x ]_ B )  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
1817ex 434 . . . . . 6  |-  ( z  e.  A  ->  (
y  e.  [_ z  /  x ]_ B  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B ) )
199, 10, 18exlimd 1856 . . . . 5  |-  ( z  e.  A  ->  ( E. y  y  e.  [_ z  /  x ]_ B  ->  E. y  e.  U_  x  e.  A  B
y  e.  [_ z  /  x ]_ B ) )
208, 19syl5bi 217 . . . 4  |-  ( z  e.  A  ->  ( [_ z  /  x ]_ B  =/=  (/)  ->  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B
) )
2120ralimia 2848 . . 3  |-  ( A. z  e.  A  [_ z  /  x ]_ B  =/=  (/)  ->  A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B )
227, 21sylbi 195 . 2  |-  ( A. x  e.  A  B  =/=  (/)  ->  A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e.  [_ z  /  x ]_ B
)
23 ac6c4.1 . . 3  |-  A  e. 
_V
24 ac6c4.2 . . . 4  |-  B  e. 
_V
2523, 24iunex 6754 . . 3  |-  U_ x  e.  A  B  e.  _V
26 eleq1 2532 . . 3  |-  ( y  =  ( f `  z )  ->  (
y  e.  [_ z  /  x ]_ B  <->  ( f `  z )  e.  [_ z  /  x ]_ B
) )
2723, 25, 26ac6 8849 . 2  |-  ( A. z  e.  A  E. y  e.  U_  x  e.  A  B y  e. 
[_ z  /  x ]_ B  ->  E. f
( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z
)  e.  [_ z  /  x ]_ B ) )
28 ffn 5722 . . . 4  |-  ( f : A --> U_ x  e.  A  B  ->  f  Fn  A )
29 nfv 1678 . . . . . 6  |-  F/ z ( f `  x
)  e.  B
302nfel2 2640 . . . . . 6  |-  F/ x
( f `  z
)  e.  [_ z  /  x ]_ B
31 fveq2 5857 . . . . . . 7  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
3231, 5eleq12d 2542 . . . . . 6  |-  ( x  =  z  ->  (
( f `  x
)  e.  B  <->  ( f `  z )  e.  [_ z  /  x ]_ B
) )
3329, 30, 32cbvral 3077 . . . . 5  |-  ( A. x  e.  A  (
f `  x )  e.  B  <->  A. z  e.  A  ( f `  z
)  e.  [_ z  /  x ]_ B )
3433biimpri 206 . . . 4  |-  ( A. z  e.  A  (
f `  z )  e.  [_ z  /  x ]_ B  ->  A. x  e.  A  ( f `  x )  e.  B
)
3528, 34anim12i 566 . . 3  |-  ( ( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z )  e.  [_ z  /  x ]_ B )  -> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
3635eximi 1630 . 2  |-  ( E. f ( f : A --> U_ x  e.  A  B  /\  A. z  e.  A  ( f `  z )  e.  [_ z  /  x ]_ B
)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
3722, 27, 363syl 20 1  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   E.wex 1591    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   _Vcvv 3106   [_csb 3428   (/)c0 3778   U_ciun 4318    Fn wfn 5574   -->wf 5575   ` cfv 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-recs 7032  df-en 7507  df-card 8309  df-ac 8486
This theorem is referenced by:  ac6c5  8851  ac9  8852
  Copyright terms: Public domain W3C validator