MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrec Structured version   Unicode version

Theorem abvrec 17261
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvrec.z  |-  .0.  =  ( 0g `  R )
abvrec.p  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
abvrec  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( I `  X ) )  =  ( 1  /  ( F `  X )
) )

Proof of Theorem abvrec
StepHypRef Expression
1 simplr 754 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  F  e.  A )
2 simpll 753 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  R  e.  DivRing )
3 simprl 755 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  X  e.  B )
4 simprr 756 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  X  =/=  .0.  )
5 abvneg.b . . . . . . 7  |-  B  =  ( Base `  R
)
6 abvrec.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
7 abvrec.p . . . . . . 7  |-  I  =  ( invr `  R
)
85, 6, 7drnginvrcl 17189 . . . . . 6  |-  ( ( R  e.  DivRing  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  (
I `  X )  e.  B )
92, 3, 4, 8syl3anc 1223 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  (
I `  X )  e.  B )
10 abv0.a . . . . . 6  |-  A  =  (AbsVal `  R )
1110, 5abvcl 17249 . . . . 5  |-  ( ( F  e.  A  /\  ( I `  X
)  e.  B )  ->  ( F `  ( I `  X
) )  e.  RR )
121, 9, 11syl2anc 661 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( I `  X ) )  e.  RR )
1312recnd 9611 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( I `  X ) )  e.  CC )
1410, 5abvcl 17249 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
151, 3, 14syl2anc 661 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  X )  e.  RR )
1615recnd 9611 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  X )  e.  CC )
1710, 5, 6abvne0 17252 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )
181, 3, 4, 17syl3anc 1223 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  X )  =/=  0 )
1913, 16, 18divcan3d 10314 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  (
( ( F `  X )  x.  ( F `  ( I `  X ) ) )  /  ( F `  X ) )  =  ( F `  (
I `  X )
) )
20 eqid 2460 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
21 eqid 2460 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
225, 6, 20, 21, 7drnginvrr 17192 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
232, 3, 4, 22syl3anc 1223 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
2423fveq2d 5861 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( I `  X ) ) )  =  ( F `  ( 1r `  R ) ) )
2510, 5, 20abvmul 17254 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B  /\  ( I `  X
)  e.  B )  ->  ( F `  ( X ( .r `  R ) ( I `
 X ) ) )  =  ( ( F `  X )  x.  ( F `  ( I `  X
) ) ) )
261, 3, 9, 25syl3anc 1223 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( I `  X ) ) )  =  ( ( F `
 X )  x.  ( F `  (
I `  X )
) ) )
2724, 26eqtr3d 2503 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( 1r `  R ) )  =  ( ( F `  X )  x.  ( F `  ( I `  X ) ) ) )
2810, 21abv1 17258 . . . . 5  |-  ( ( R  e.  DivRing  /\  F  e.  A )  ->  ( F `  ( 1r `  R ) )  =  1 )
2928adantr 465 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( 1r `  R ) )  =  1 )
3027, 29eqtr3d 2503 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  (
( F `  X
)  x.  ( F `
 ( I `  X ) ) )  =  1 )
3130oveq1d 6290 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  (
( ( F `  X )  x.  ( F `  ( I `  X ) ) )  /  ( F `  X ) )  =  ( 1  /  ( F `  X )
) )
3219, 31eqtr3d 2503 1  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  X  =/=  .0.  ) )  ->  ( F `  ( I `  X ) )  =  ( 1  /  ( F `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   ` cfv 5579  (class class class)co 6275   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    / cdiv 10195   Basecbs 14479   .rcmulr 14545   0gc0g 14684   1rcur 16936   invrcinvr 17097   DivRingcdr 17172  AbsValcabv 17241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-tpos 6945  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-ico 11524  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-0g 14686  df-mnd 15721  df-grp 15851  df-minusg 15852  df-mgp 16925  df-ur 16937  df-rng 16981  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-invr 17098  df-drng 17174  df-abv 17242
This theorem is referenced by:  abvdiv  17262
  Copyright terms: Public domain W3C validator