Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvor0 Structured version   Unicode version

Theorem abvor0 3796
 Description: The class builder of a wff not containing the abstraction variable is either the universal class or the empty set. (Contributed by Mario Carneiro, 29-Aug-2013.)
Assertion
Ref Expression
abvor0
Distinct variable group:   ,

Proof of Theorem abvor0
StepHypRef Expression
1 id 22 . . . . . 6
2 vex 3109 . . . . . . 7
32a1i 11 . . . . . 6
41, 32thd 240 . . . . 5
54abbi1dv 2598 . . . 4
65con3i 135 . . 3
7 id 22 . . . . 5
8 noel 3782 . . . . . 6
98a1i 11 . . . . 5
107, 92falsed 351 . . . 4
1110abbi1dv 2598 . . 3
126, 11syl 16 . 2
1312orri 376 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wo 368   wceq 1374   wcel 1762  cab 2445  cvv 3106  c0 3778 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-v 3108  df-dif 3472  df-nul 3779 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator