MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Unicode version

Theorem abvneg 17801
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvneg.p  |-  N  =  ( invg `  R )
Assertion
Ref Expression
abvneg  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7  |-  A  =  (AbsVal `  R )
21abvrcl 17788 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Ring )
32adantr 463 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  R  e.  Ring )
4 ringgrp 17521 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
52, 4syl 17 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Grp )
6 abvneg.b . . . . . . 7  |-  B  =  ( Base `  R
)
7 abvneg.p . . . . . . 7  |-  N  =  ( invg `  R )
86, 7grpinvcl 16417 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
95, 8sylan 469 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
10 simpr 459 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  X  e.  B )
11 eqid 2402 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
12 eqid 2402 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
136, 11, 12ring1eq0 17556 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  B  /\  X  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  -> 
( N `  X
)  =  X ) )
143, 9, 10, 13syl3anc 1230 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( 1r `  R )  =  ( 0g `  R )  ->  ( N `  X )  =  X ) )
1514imp 427 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( N `  X )  =  X )
1615fveq2d 5852 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( F `  ( N `  X
) )  =  ( F `  X ) )
176, 11ringidcl 17537 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
182, 17syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  A  ->  ( 1r `  R )  e.  B )
196, 7grpinvcl 16417 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( 1r `  R ) )  e.  B )
205, 18, 19syl2anc 659 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  ( N `  ( 1r `  R ) )  e.  B )
211, 6abvcl 17791 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
( F `  ( N `  ( 1r `  R ) ) )  e.  RR )
2220, 21mpdan 666 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  RR )
2322recnd 9651 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  CC )
2423sqvald 12349 . . . . . . . . . . 11  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 ( N `  ( 1r `  R ) ) ) ) )
25 eqid 2402 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
261, 6, 25abvmul 17796 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  ( N `  ( 1r `  R ) )  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
2720, 20, 26mpd3an23 1328 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
286, 25, 7, 2, 20, 18ringmneg2 17561 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( N `  ( ( N `  ( 1r
`  R ) ) ( .r `  R
) ( 1r `  R ) ) ) )
296, 25, 11, 7, 2, 18ringnegl 17558 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( 1r `  R ) )  =  ( N `  ( 1r `  R ) ) )
3029fveq2d 5852 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( 1r `  R
) ) )  =  ( N `  ( N `  ( 1r `  R ) ) ) )
316, 7grpinvinv 16427 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
325, 18, 31syl2anc 659 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( N `  ( 1r `  R
) ) )  =  ( 1r `  R
) )
3328, 30, 323eqtrd 2447 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
3433fveq2d 5852 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( F `  ( 1r
`  R ) ) )
3524, 27, 343eqtr2d 2449 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
3635adantr 463 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
371, 11, 12abv1z 17799 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( 1r `  R ) )  =  1 )
3836, 37eqtrd 2443 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  1 )
39 sq1 12305 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4038, 39syl6eqr 2461 . . . . . . 7  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )
411, 6abvge0 17792 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
4220, 41mpdan 666 . . . . . . . . 9  |-  ( F  e.  A  ->  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
43 1re 9624 . . . . . . . . . 10  |-  1  e.  RR
44 0le1 10115 . . . . . . . . . 10  |-  0  <_  1
45 sq11 12283 . . . . . . . . . 10  |-  ( ( ( ( F `  ( N `  ( 1r
`  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r
`  R ) ) ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( F `  ( N `
 ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4643, 44, 45mpanr12 683 . . . . . . . . 9  |-  ( ( ( F `  ( N `  ( 1r `  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )  ->  ( (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4722, 42, 46syl2anc 659 . . . . . . . 8  |-  ( F  e.  A  ->  (
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r `  R ) ) )  =  1 ) )
4847biimpa 482 . . . . . . 7  |-  ( ( F  e.  A  /\  ( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
4940, 48syldan 468 . . . . . 6  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
5049adantlr 713 . . . . 5  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 )
5150oveq1d 6292 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( 1  x.  ( F `  X ) ) )
52 simpl 455 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  F  e.  A )
5320adantr 463 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  ( 1r `  R ) )  e.  B )
541, 6, 25abvmul 17796 . . . . . . 7  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  X  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X ) )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) ) )
5552, 53, 10, 54syl3anc 1230 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
) )
566, 25, 11, 7, 3, 10ringnegl 17558 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X )  =  ( N `  X ) )
5756fveq2d 5852 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( F `  ( N `  X ) ) )
5855, 57eqtr3d 2445 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) )  =  ( F `  ( N `  X ) ) )
5958adantr 463 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( F `
 ( N `  X ) ) )
6051, 59eqtr3d 2445 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  ( N `
 X ) ) )
611, 6abvcl 17791 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
6261recnd 9651 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  CC )
6362mulid2d 9643 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( 1  x.  ( F `  X )
)  =  ( F `
 X ) )
6463adantr 463 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  X ) )
6560, 64eqtr3d 2445 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  X ) )  =  ( F `
 X ) )
6616, 65pm2.61dane 2721 1  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   RRcr 9520   0cc0 9521   1c1 9522    x. cmul 9526    <_ cle 9658   2c2 10625   ^cexp 12208   Basecbs 14839   .rcmulr 14908   0gc0g 15052   Grpcgrp 16375   invgcminusg 16376   1rcur 17471   Ringcrg 17516  AbsValcabv 17783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-ico 11587  df-seq 12150  df-exp 12209  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-plusg 14920  df-0g 15054  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-grp 16379  df-minusg 16380  df-mgp 17460  df-ur 17472  df-ring 17518  df-abv 17784
This theorem is referenced by:  abvsubtri  17802  ostthlem1  24191  ostth3  24202
  Copyright terms: Public domain W3C validator