MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Unicode version

Theorem abvneg 16843
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvneg.p  |-  N  =  ( invg `  R )
Assertion
Ref Expression
abvneg  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7  |-  A  =  (AbsVal `  R )
21abvrcl 16830 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Ring )
32adantr 462 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  R  e.  Ring )
4 rnggrp 16586 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
52, 4syl 16 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Grp )
6 abvneg.b . . . . . . 7  |-  B  =  ( Base `  R
)
7 abvneg.p . . . . . . 7  |-  N  =  ( invg `  R )
86, 7grpinvcl 15563 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
95, 8sylan 468 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
10 simpr 458 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  X  e.  B )
11 eqid 2433 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
12 eqid 2433 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
136, 11, 12rng1eq0 16619 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  B  /\  X  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  -> 
( N `  X
)  =  X ) )
143, 9, 10, 13syl3anc 1211 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( 1r `  R )  =  ( 0g `  R )  ->  ( N `  X )  =  X ) )
1514imp 429 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( N `  X )  =  X )
1615fveq2d 5683 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( F `  ( N `  X
) )  =  ( F `  X ) )
176, 11rngidcl 16601 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
182, 17syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  A  ->  ( 1r `  R )  e.  B )
196, 7grpinvcl 15563 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( 1r `  R ) )  e.  B )
205, 18, 19syl2anc 654 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  ( N `  ( 1r `  R ) )  e.  B )
211, 6abvcl 16833 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
( F `  ( N `  ( 1r `  R ) ) )  e.  RR )
2220, 21mpdan 661 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  RR )
2322recnd 9400 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  CC )
2423sqvald 11989 . . . . . . . . . . 11  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 ( N `  ( 1r `  R ) ) ) ) )
25 eqid 2433 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
261, 6, 25abvmul 16838 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  ( N `  ( 1r `  R ) )  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
2720, 20, 26mpd3an23 1309 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
286, 25, 7, 2, 20, 18rngmneg2 16623 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( N `  ( ( N `  ( 1r
`  R ) ) ( .r `  R
) ( 1r `  R ) ) ) )
296, 25, 11, 7, 2, 18rngnegl 16620 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( 1r `  R ) )  =  ( N `  ( 1r `  R ) ) )
3029fveq2d 5683 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( 1r `  R
) ) )  =  ( N `  ( N `  ( 1r `  R ) ) ) )
316, 7grpinvinv 15573 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
325, 18, 31syl2anc 654 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( N `  ( 1r `  R
) ) )  =  ( 1r `  R
) )
3328, 30, 323eqtrd 2469 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
3433fveq2d 5683 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( F `  ( 1r
`  R ) ) )
3524, 27, 343eqtr2d 2471 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
3635adantr 462 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
371, 11, 12abv1z 16841 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( 1r `  R ) )  =  1 )
3836, 37eqtrd 2465 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  1 )
39 sq1 11944 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4038, 39syl6eqr 2483 . . . . . . 7  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )
411, 6abvge0 16834 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
4220, 41mpdan 661 . . . . . . . . 9  |-  ( F  e.  A  ->  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
43 1re 9373 . . . . . . . . . 10  |-  1  e.  RR
44 0le1 9851 . . . . . . . . . 10  |-  0  <_  1
45 sq11 11922 . . . . . . . . . 10  |-  ( ( ( ( F `  ( N `  ( 1r
`  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r
`  R ) ) ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( F `  ( N `
 ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4643, 44, 45mpanr12 678 . . . . . . . . 9  |-  ( ( ( F `  ( N `  ( 1r `  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )  ->  ( (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4722, 42, 46syl2anc 654 . . . . . . . 8  |-  ( F  e.  A  ->  (
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r `  R ) ) )  =  1 ) )
4847biimpa 481 . . . . . . 7  |-  ( ( F  e.  A  /\  ( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
4940, 48syldan 467 . . . . . 6  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
5049adantlr 707 . . . . 5  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 )
5150oveq1d 6095 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( 1  x.  ( F `  X ) ) )
52 simpl 454 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  F  e.  A )
5320adantr 462 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  ( 1r `  R ) )  e.  B )
541, 6, 25abvmul 16838 . . . . . . 7  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  X  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X ) )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) ) )
5552, 53, 10, 54syl3anc 1211 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
) )
566, 25, 11, 7, 3, 10rngnegl 16620 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X )  =  ( N `  X ) )
5756fveq2d 5683 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( F `  ( N `  X ) ) )
5855, 57eqtr3d 2467 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) )  =  ( F `  ( N `  X ) ) )
5958adantr 462 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( F `
 ( N `  X ) ) )
6051, 59eqtr3d 2467 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  ( N `
 X ) ) )
611, 6abvcl 16833 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
6261recnd 9400 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  CC )
6362mulid2d 9392 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( 1  x.  ( F `  X )
)  =  ( F `
 X ) )
6463adantr 462 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  X ) )
6560, 64eqtr3d 2467 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  X ) )  =  ( F `
 X ) )
6616, 65pm2.61dane 2679 1  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   RRcr 9269   0cc0 9270   1c1 9271    x. cmul 9275    <_ cle 9407   2c2 10359   ^cexp 11849   Basecbs 14157   .rcmulr 14222   0gc0g 14361   Grpcgrp 15393   invgcminusg 15394   Ringcrg 16577   1rcur 16579  AbsValcabv 16825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-n0 10568  df-z 10635  df-uz 10850  df-ico 11294  df-seq 11791  df-exp 11850  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-plusg 14234  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-mgp 16566  df-rng 16580  df-ur 16582  df-abv 16826
This theorem is referenced by:  abvsubtri  16844  ostthlem1  22761  ostth3  22772
  Copyright terms: Public domain W3C validator