MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Unicode version

Theorem abvneg 17263
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvneg.p  |-  N  =  ( invg `  R )
Assertion
Ref Expression
abvneg  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7  |-  A  =  (AbsVal `  R )
21abvrcl 17250 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Ring )
32adantr 465 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  R  e.  Ring )
4 rnggrp 16988 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
52, 4syl 16 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Grp )
6 abvneg.b . . . . . . 7  |-  B  =  ( Base `  R
)
7 abvneg.p . . . . . . 7  |-  N  =  ( invg `  R )
86, 7grpinvcl 15893 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
95, 8sylan 471 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
10 simpr 461 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  X  e.  B )
11 eqid 2467 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
12 eqid 2467 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
136, 11, 12rng1eq0 17022 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  B  /\  X  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  -> 
( N `  X
)  =  X ) )
143, 9, 10, 13syl3anc 1228 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( 1r `  R )  =  ( 0g `  R )  ->  ( N `  X )  =  X ) )
1514imp 429 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( N `  X )  =  X )
1615fveq2d 5868 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( F `  ( N `  X
) )  =  ( F `  X ) )
176, 11rngidcl 17003 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
182, 17syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  A  ->  ( 1r `  R )  e.  B )
196, 7grpinvcl 15893 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( 1r `  R ) )  e.  B )
205, 18, 19syl2anc 661 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  ( N `  ( 1r `  R ) )  e.  B )
211, 6abvcl 17253 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
( F `  ( N `  ( 1r `  R ) ) )  e.  RR )
2220, 21mpdan 668 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  RR )
2322recnd 9618 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  CC )
2423sqvald 12269 . . . . . . . . . . 11  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 ( N `  ( 1r `  R ) ) ) ) )
25 eqid 2467 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
261, 6, 25abvmul 17258 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  ( N `  ( 1r `  R ) )  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
2720, 20, 26mpd3an23 1326 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
286, 25, 7, 2, 20, 18rngmneg2 17026 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( N `  ( ( N `  ( 1r
`  R ) ) ( .r `  R
) ( 1r `  R ) ) ) )
296, 25, 11, 7, 2, 18rngnegl 17023 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( 1r `  R ) )  =  ( N `  ( 1r `  R ) ) )
3029fveq2d 5868 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( 1r `  R
) ) )  =  ( N `  ( N `  ( 1r `  R ) ) ) )
316, 7grpinvinv 15903 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
325, 18, 31syl2anc 661 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( N `  ( 1r `  R
) ) )  =  ( 1r `  R
) )
3328, 30, 323eqtrd 2512 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
3433fveq2d 5868 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( F `  ( 1r
`  R ) ) )
3524, 27, 343eqtr2d 2514 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
3635adantr 465 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
371, 11, 12abv1z 17261 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( 1r `  R ) )  =  1 )
3836, 37eqtrd 2508 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  1 )
39 sq1 12224 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4038, 39syl6eqr 2526 . . . . . . 7  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )
411, 6abvge0 17254 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
4220, 41mpdan 668 . . . . . . . . 9  |-  ( F  e.  A  ->  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
43 1re 9591 . . . . . . . . . 10  |-  1  e.  RR
44 0le1 10072 . . . . . . . . . 10  |-  0  <_  1
45 sq11 12202 . . . . . . . . . 10  |-  ( ( ( ( F `  ( N `  ( 1r
`  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r
`  R ) ) ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( F `  ( N `
 ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4643, 44, 45mpanr12 685 . . . . . . . . 9  |-  ( ( ( F `  ( N `  ( 1r `  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )  ->  ( (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4722, 42, 46syl2anc 661 . . . . . . . 8  |-  ( F  e.  A  ->  (
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r `  R ) ) )  =  1 ) )
4847biimpa 484 . . . . . . 7  |-  ( ( F  e.  A  /\  ( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
4940, 48syldan 470 . . . . . 6  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
5049adantlr 714 . . . . 5  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 )
5150oveq1d 6297 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( 1  x.  ( F `  X ) ) )
52 simpl 457 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  F  e.  A )
5320adantr 465 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  ( 1r `  R ) )  e.  B )
541, 6, 25abvmul 17258 . . . . . . 7  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  X  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X ) )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) ) )
5552, 53, 10, 54syl3anc 1228 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
) )
566, 25, 11, 7, 3, 10rngnegl 17023 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X )  =  ( N `  X ) )
5756fveq2d 5868 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( F `  ( N `  X ) ) )
5855, 57eqtr3d 2510 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) )  =  ( F `  ( N `  X ) ) )
5958adantr 465 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( F `
 ( N `  X ) ) )
6051, 59eqtr3d 2510 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  ( N `
 X ) ) )
611, 6abvcl 17253 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
6261recnd 9618 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  CC )
6362mulid2d 9610 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( 1  x.  ( F `  X )
)  =  ( F `
 X ) )
6463adantr 465 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  X ) )
6560, 64eqtr3d 2510 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  X ) )  =  ( F `
 X ) )
6616, 65pm2.61dane 2785 1  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493    <_ cle 9625   2c2 10581   ^cexp 12129   Basecbs 14483   .rcmulr 14549   0gc0g 14688   Grpcgrp 15720   invgcminusg 15721   1rcur 16940   Ringcrg 16983  AbsValcabv 17245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-ico 11531  df-seq 12071  df-exp 12130  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-plusg 14561  df-0g 14690  df-mnd 15725  df-grp 15855  df-minusg 15856  df-mgp 16929  df-ur 16941  df-rng 16985  df-abv 17246
This theorem is referenced by:  abvsubtri  17264  ostthlem1  23537  ostth3  23548
  Copyright terms: Public domain W3C validator