MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvne0 Structured version   Unicode version

Theorem abvne0 18055
Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a  |-  A  =  (AbsVal `  R )
abvf.b  |-  B  =  ( Base `  R
)
abveq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
abvne0  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )

Proof of Theorem abvne0
StepHypRef Expression
1 abvf.a . . . 4  |-  A  =  (AbsVal `  R )
2 abvf.b . . . 4  |-  B  =  ( Base `  R
)
3 abveq0.z . . . 4  |-  .0.  =  ( 0g `  R )
41, 2, 3abveq0 18054 . . 3  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  X )  =  0  <-> 
X  =  .0.  )
)
54necon3bid 2678 . 2  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  X )  =/=  0  <->  X  =/=  .0.  ) )
65biimp3ar 1365 1  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   ` cfv 5601   0cc0 9547   Basecbs 15121   0gc0g 15338  AbsValcabv 18044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-map 7486  df-abv 18045
This theorem is referenced by:  abvgt0  18056  abv1z  18060  abvrec  18064  abvdiv  18065  abvdom  18066
  Copyright terms: Public domain W3C validator