MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvn0b Structured version   Unicode version

Theorem abvn0b 18064
Description: Another characterization of domains, hinted at in abvtriv 17603: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypothesis
Ref Expression
abvn0b.b  |-  A  =  (AbsVal `  R )
Assertion
Ref Expression
abvn0b  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A  =/=  (/) ) )

Proof of Theorem abvn0b
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnnzr 18057 . . 3  |-  ( R  e. Domn  ->  R  e. NzRing )
2 abvn0b.b . . . . 5  |-  A  =  (AbsVal `  R )
3 eqid 2382 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
4 eqid 2382 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
5 eqid 2382 . . . . 5  |-  ( x  e.  ( Base `  R
)  |->  if ( x  =  ( 0g `  R ) ,  0 ,  1 ) )  =  ( x  e.  ( Base `  R
)  |->  if ( x  =  ( 0g `  R ) ,  0 ,  1 ) )
6 eqid 2382 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
7 domnring 18058 . . . . 5  |-  ( R  e. Domn  ->  R  e.  Ring )
83, 6, 4domnmuln0 18060 . . . . 5  |-  ( ( R  e. Domn  /\  (
y  e.  ( Base `  R )  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  ( Base `  R )  /\  z  =/=  ( 0g `  R
) ) )  -> 
( y ( .r
`  R ) z )  =/=  ( 0g
`  R ) )
92, 3, 4, 5, 6, 7, 8abvtrivd 17602 . . . 4  |-  ( R  e. Domn  ->  ( x  e.  ( Base `  R
)  |->  if ( x  =  ( 0g `  R ) ,  0 ,  1 ) )  e.  A )
10 ne0i 3717 . . . 4  |-  ( ( x  e.  ( Base `  R )  |->  if ( x  =  ( 0g
`  R ) ,  0 ,  1 ) )  e.  A  ->  A  =/=  (/) )
119, 10syl 16 . . 3  |-  ( R  e. Domn  ->  A  =/=  (/) )
121, 11jca 530 . 2  |-  ( R  e. Domn  ->  ( R  e. NzRing  /\  A  =/=  (/) ) )
13 n0 3721 . . . . 5  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
14 neanior 2707 . . . . . . . . 9  |-  ( ( y  =/=  ( 0g
`  R )  /\  z  =/=  ( 0g `  R ) )  <->  -.  (
y  =  ( 0g
`  R )  \/  z  =  ( 0g
`  R ) ) )
15 an4 822 . . . . . . . . . . 11  |-  ( ( ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) )  /\  ( y  =/=  ( 0g `  R
)  /\  z  =/=  ( 0g `  R ) ) )  <->  ( (
y  e.  ( Base `  R )  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  ( Base `  R )  /\  z  =/=  ( 0g `  R
) ) ) )
162, 3, 4, 6abvdom 17600 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  y  =/=  ( 0g `  R ) )  /\  ( z  e.  ( Base `  R
)  /\  z  =/=  ( 0g `  R ) ) )  ->  (
y ( .r `  R ) z )  =/=  ( 0g `  R ) )
17163expib 1197 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
( ( y  e.  ( Base `  R
)  /\  y  =/=  ( 0g `  R ) )  /\  ( z  e.  ( Base `  R
)  /\  z  =/=  ( 0g `  R ) ) )  ->  (
y ( .r `  R ) z )  =/=  ( 0g `  R ) ) )
1815, 17syl5bi 217 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
( ( y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  /\  ( y  =/=  ( 0g `  R
)  /\  z  =/=  ( 0g `  R ) ) )  ->  (
y ( .r `  R ) z )  =/=  ( 0g `  R ) ) )
1918expdimp 435 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( (
y  =/=  ( 0g
`  R )  /\  z  =/=  ( 0g `  R ) )  -> 
( y ( .r
`  R ) z )  =/=  ( 0g
`  R ) ) )
2014, 19syl5bir 218 . . . . . . . 8  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( -.  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) )  ->  ( y
( .r `  R
) z )  =/=  ( 0g `  R
) ) )
2120necon4bd 2604 . . . . . . 7  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( (
y ( .r `  R ) z )  =  ( 0g `  R )  ->  (
y  =  ( 0g
`  R )  \/  z  =  ( 0g
`  R ) ) ) )
2221ralrimivva 2803 . . . . . 6  |-  ( x  e.  A  ->  A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) )
2322exlimiv 1730 . . . . 5  |-  ( E. x  x  e.  A  ->  A. y  e.  (
Base `  R ) A. z  e.  ( Base `  R ) ( ( y ( .r
`  R ) z )  =  ( 0g
`  R )  -> 
( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) )
2413, 23sylbi 195 . . . 4  |-  ( A  =/=  (/)  ->  A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) )
2524anim2i 567 . . 3  |-  ( ( R  e. NzRing  /\  A  =/=  (/) )  ->  ( R  e. NzRing  /\  A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) ) )
263, 6, 4isdomn 18056 . . 3  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) ) )
2725, 26sylibr 212 . 2  |-  ( ( R  e. NzRing  /\  A  =/=  (/) )  ->  R  e. Domn
)
2812, 27impbii 188 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826    =/= wne 2577   A.wral 2732   (/)c0 3711   ifcif 3857    |-> cmpt 4425   ` cfv 5496  (class class class)co 6196   0cc0 9403   1c1 9404   Basecbs 14634   .rcmulr 14703   0gc0g 14847  AbsValcabv 17578  NzRingcnzr 18018  Domncdomn 18041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-recs 6960  df-rdg 6994  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-ico 11456  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-plusg 14715  df-0g 14849  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-grp 16174  df-minusg 16175  df-mgp 17255  df-ring 17313  df-abv 17579  df-nzr 18019  df-domn 18045
This theorem is referenced by:  nrgdomn  21265
  Copyright terms: Public domain W3C validator