MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmul Structured version   Unicode version

Theorem abvmul 17349
Description: An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a  |-  A  =  (AbsVal `  R )
abvf.b  |-  B  =  ( Base `  R
)
abvmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
abvmul  |-  ( ( F  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )

Proof of Theorem abvmul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . . 8  |-  A  =  (AbsVal `  R )
21abvrcl 17341 . . . . . . 7  |-  ( F  e.  A  ->  R  e.  Ring )
3 abvf.b . . . . . . . 8  |-  B  =  ( Base `  R
)
4 eqid 2441 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
5 abvmul.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
6 eqid 2441 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
71, 3, 4, 5, 6isabv 17339 . . . . . . 7  |-  ( R  e.  Ring  ->  ( F  e.  A  <->  ( F : B --> ( 0 [,) +oo )  /\  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  B  ( ( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) ) )
82, 7syl 16 . . . . . 6  |-  ( F  e.  A  ->  ( F  e.  A  <->  ( F : B --> ( 0 [,) +oo )  /\  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  B  ( ( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) ) )
98ibi 241 . . . . 5  |-  ( F  e.  A  ->  ( F : B --> ( 0 [,) +oo )  /\  A. x  e.  B  ( ( ( F `  x )  =  0  <-> 
x  =  ( 0g
`  R ) )  /\  A. y  e.  B  ( ( F `
 ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) ) ) )
109simprd 463 . . . 4  |-  ( F  e.  A  ->  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  B  ( ( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) )
11 simpl 457 . . . . . . 7  |-  ( ( ( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) ) )
1211ralimi 2834 . . . . . 6  |-  ( A. y  e.  B  (
( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )  ->  A. y  e.  B  ( F `  ( x 
.x.  y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
1312adantl 466 . . . . 5  |-  ( ( ( ( F `  x )  =  0  <-> 
x  =  ( 0g
`  R ) )  /\  A. y  e.  B  ( ( F `
 ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) )  ->  A. y  e.  B  ( F `  ( x  .x.  y
) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
1413ralimi 2834 . . . 4  |-  ( A. x  e.  B  (
( ( F `  x )  =  0  <-> 
x  =  ( 0g
`  R ) )  /\  A. y  e.  B  ( ( F `
 ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) )  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .x.  y
) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
1510, 14syl 16 . . 3  |-  ( F  e.  A  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .x.  y
) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
16 oveq1 6285 . . . . . 6  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
1716fveq2d 5857 . . . . 5  |-  ( x  =  X  ->  ( F `  ( x  .x.  y ) )  =  ( F `  ( X  .x.  y ) ) )
18 fveq2 5853 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
1918oveq1d 6293 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  x.  ( F `
 y ) )  =  ( ( F `
 X )  x.  ( F `  y
) ) )
2017, 19eqeq12d 2463 . . . 4  |-  ( x  =  X  ->  (
( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  <->  ( F `  ( X  .x.  y
) )  =  ( ( F `  X
)  x.  ( F `
 y ) ) ) )
21 oveq2 6286 . . . . . 6  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
2221fveq2d 5857 . . . . 5  |-  ( y  =  Y  ->  ( F `  ( X  .x.  y ) )  =  ( F `  ( X  .x.  Y ) ) )
23 fveq2 5853 . . . . . 6  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
2423oveq2d 6294 . . . . 5  |-  ( y  =  Y  ->  (
( F `  X
)  x.  ( F `
 y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )
2522, 24eqeq12d 2463 . . . 4  |-  ( y  =  Y  ->  (
( F `  ( X  .x.  y ) )  =  ( ( F `
 X )  x.  ( F `  y
) )  <->  ( F `  ( X  .x.  Y
) )  =  ( ( F `  X
)  x.  ( F `
 Y ) ) ) )
2620, 25rspc2v 3203 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  -> 
( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) ) )
2715, 26syl5com 30 . 2  |-  ( F  e.  A  ->  (
( X  e.  B  /\  Y  e.  B
)  ->  ( F `  ( X  .x.  Y
) )  =  ( ( F `  X
)  x.  ( F `
 Y ) ) ) )
28273impib 1193 1  |-  ( ( F  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   A.wral 2791   class class class wbr 4434   -->wf 5571   ` cfv 5575  (class class class)co 6278   0cc0 9492    + caddc 9495    x. cmul 9497   +oocpnf 9625    <_ cle 9629   [,)cico 11537   Basecbs 14506   +g cplusg 14571   .rcmulr 14572   0gc0g 14711   Ringcrg 17069  AbsValcabv 17336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-op 4018  df-uni 4232  df-br 4435  df-opab 4493  df-mpt 4494  df-id 4782  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-fv 5583  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-map 7421  df-abv 17337
This theorem is referenced by:  abv1z  17352  abvneg  17354  abvrec  17356  abvdiv  17357  abvdom  17358  abvres  17359  nmmul  21043  sranlm  21063  abvcxp  23669  qabvexp  23680  ostthlem2  23682  ostth2lem2  23688  ostth3  23692
  Copyright terms: Public domain W3C validator