MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvfval Structured version   Unicode version

Theorem abvfval 17594
Description: Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvfval.a  |-  A  =  (AbsVal `  R )
abvfval.b  |-  B  =  ( Base `  R
)
abvfval.p  |-  .+  =  ( +g  `  R )
abvfval.t  |-  .x.  =  ( .r `  R )
abvfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
abvfval  |-  ( R  e.  Ring  ->  A  =  { f  e.  ( ( 0 [,) +oo )  ^m  B )  | 
A. x  e.  B  ( ( ( f `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( f `
 ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) ) } )
Distinct variable groups:    x, f,
y, B    .+ , f    R, f, x, y    .x. , f    .0. , f
Allowed substitution hints:    A( x, y, f)    .+ ( x, y)    .x. ( x, y)    .0. ( x, y)

Proof of Theorem abvfval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 abvfval.a . 2  |-  A  =  (AbsVal `  R )
2 fveq2 5872 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 abvfval.b . . . . . 6  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2516 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
54oveq2d 6312 . . . 4  |-  ( r  =  R  ->  (
( 0 [,) +oo )  ^m  ( Base `  r
) )  =  ( ( 0 [,) +oo )  ^m  B ) )
6 fveq2 5872 . . . . . . . . 9  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
7 abvfval.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
86, 7syl6eqr 2516 . . . . . . . 8  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
98eqeq2d 2471 . . . . . . 7  |-  ( r  =  R  ->  (
x  =  ( 0g
`  r )  <->  x  =  .0.  ) )
109bibi2d 318 . . . . . 6  |-  ( r  =  R  ->  (
( ( f `  x )  =  0  <-> 
x  =  ( 0g
`  r ) )  <-> 
( ( f `  x )  =  0  <-> 
x  =  .0.  )
) )
11 fveq2 5872 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
12 abvfval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
1311, 12syl6eqr 2516 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1413oveqd 6313 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
1514fveq2d 5876 . . . . . . . . 9  |-  ( r  =  R  ->  (
f `  ( x
( .r `  r
) y ) )  =  ( f `  ( x  .x.  y ) ) )
1615eqeq1d 2459 . . . . . . . 8  |-  ( r  =  R  ->  (
( f `  (
x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  <->  ( f `  ( x  .x.  y
) )  =  ( ( f `  x
)  x.  ( f `
 y ) ) ) )
17 fveq2 5872 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( +g  `  r )  =  ( +g  `  R
) )
18 abvfval.p . . . . . . . . . . . 12  |-  .+  =  ( +g  `  R )
1917, 18syl6eqr 2516 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( +g  `  r )  = 
.+  )
2019oveqd 6313 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( +g  `  r
) y )  =  ( x  .+  y
) )
2120fveq2d 5876 . . . . . . . . 9  |-  ( r  =  R  ->  (
f `  ( x
( +g  `  r ) y ) )  =  ( f `  (
x  .+  y )
) )
2221breq1d 4466 . . . . . . . 8  |-  ( r  =  R  ->  (
( f `  (
x ( +g  `  r
) y ) )  <_  ( ( f `
 x )  +  ( f `  y
) )  <->  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) )
2316, 22anbi12d 710 . . . . . . 7  |-  ( r  =  R  ->  (
( ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  /\  ( f `  ( x ( +g  `  r ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) )  <-> 
( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) )
244, 23raleqbidv 3068 . . . . . 6  |-  ( r  =  R  ->  ( A. y  e.  ( Base `  r ) ( ( f `  (
x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x ( +g  `  r
) y ) )  <_  ( ( f `
 x )  +  ( f `  y
) ) )  <->  A. y  e.  B  ( (
f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) ) )
2510, 24anbi12d 710 . . . . 5  |-  ( r  =  R  ->  (
( ( ( f `
 x )  =  0  <->  x  =  ( 0g `  r ) )  /\  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  r ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) )  <->  ( ( ( f `  x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( (
f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) ) ) )
264, 25raleqbidv 3068 . . . 4  |-  ( r  =  R  ->  ( A. x  e.  ( Base `  r ) ( ( ( f `  x )  =  0  <-> 
x  =  ( 0g
`  r ) )  /\  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  r ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) )  <->  A. x  e.  B  ( ( ( f `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( f `
 ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) ) ) )
275, 26rabeqbidv 3104 . . 3  |-  ( r  =  R  ->  { f  e.  ( ( 0 [,) +oo )  ^m  ( Base `  r )
)  |  A. x  e.  ( Base `  r
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  r ) )  /\  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  r ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) }  =  {
f  e.  ( ( 0 [,) +oo )  ^m  B )  |  A. x  e.  B  (
( ( f `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) } )
28 df-abv 17593 . . 3  |- AbsVal  =  ( r  e.  Ring  |->  { f  e.  ( ( 0 [,) +oo )  ^m  ( Base `  r )
)  |  A. x  e.  ( Base `  r
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  r ) )  /\  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  r ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) } )
29 ovex 6324 . . . 4  |-  ( ( 0 [,) +oo )  ^m  B )  e.  _V
3029rabex 4607 . . 3  |-  { f  e.  ( ( 0 [,) +oo )  ^m  B )  |  A. x  e.  B  (
( ( f `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) }  e.  _V
3127, 28, 30fvmpt 5956 . 2  |-  ( R  e.  Ring  ->  (AbsVal `  R )  =  {
f  e.  ( ( 0 [,) +oo )  ^m  B )  |  A. x  e.  B  (
( ( f `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) } )
321, 31syl5eq 2510 1  |-  ( R  e.  Ring  ->  A  =  { f  e.  ( ( 0 [,) +oo )  ^m  B )  | 
A. x  e.  B  ( ( ( f `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( f `
 ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   class class class wbr 4456   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   0cc0 9509    + caddc 9512    x. cmul 9514   +oocpnf 9642    <_ cle 9646   [,)cico 11556   Basecbs 14644   +g cplusg 14712   .rcmulr 14713   0gc0g 14857   Ringcrg 17325  AbsValcabv 17592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-abv 17593
This theorem is referenced by:  isabv  17595
  Copyright terms: Public domain W3C validator