MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdom Structured version   Unicode version

Theorem abvdom 17263
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvrec.z  |-  .0.  =  ( 0g `  R )
abvdom.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
abvdom  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( X  .x.  Y
)  =/=  .0.  )

Proof of Theorem abvdom
StepHypRef Expression
1 simp1 991 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  F  e.  A )
2 simp2l 1017 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  X  e.  B )
3 simp3l 1019 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  Y  e.  B )
4 abv0.a . . . . 5  |-  A  =  (AbsVal `  R )
5 abvneg.b . . . . 5  |-  B  =  ( Base `  R
)
6 abvdom.t . . . . 5  |-  .x.  =  ( .r `  R )
74, 5, 6abvmul 17254 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )
81, 2, 3, 7syl3anc 1223 . . 3  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )
94, 5abvcl 17249 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
101, 2, 9syl2anc 661 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  X
)  e.  RR )
1110recnd 9611 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  X
)  e.  CC )
124, 5abvcl 17249 . . . . . 6  |-  ( ( F  e.  A  /\  Y  e.  B )  ->  ( F `  Y
)  e.  RR )
131, 3, 12syl2anc 661 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  Y
)  e.  RR )
1413recnd 9611 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  Y
)  e.  CC )
15 simp2r 1018 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  X  =/=  .0.  )
16 abvrec.z . . . . . 6  |-  .0.  =  ( 0g `  R )
174, 5, 16abvne0 17252 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )
181, 2, 15, 17syl3anc 1223 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  X
)  =/=  0 )
19 simp3r 1020 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  Y  =/=  .0.  )
204, 5, 16abvne0 17252 . . . . 5  |-  ( ( F  e.  A  /\  Y  e.  B  /\  Y  =/=  .0.  )  -> 
( F `  Y
)  =/=  0 )
211, 3, 19, 20syl3anc 1223 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  Y
)  =/=  0 )
2211, 14, 18, 21mulne0d 10190 . . 3  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( ( F `  X )  x.  ( F `  Y )
)  =/=  0 )
238, 22eqnetrd 2753 . 2  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  ( X  .x.  Y ) )  =/=  0 )
244, 16abv0 17256 . . . . 5  |-  ( F  e.  A  ->  ( F `  .0.  )  =  0 )
251, 24syl 16 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  .0.  )  =  0 )
26 fveq2 5857 . . . . 5  |-  ( ( X  .x.  Y )  =  .0.  ->  ( F `  ( X  .x.  Y ) )  =  ( F `  .0.  ) )
2726eqeq1d 2462 . . . 4  |-  ( ( X  .x.  Y )  =  .0.  ->  (
( F `  ( X  .x.  Y ) )  =  0  <->  ( F `  .0.  )  =  0 ) )
2825, 27syl5ibrcom 222 . . 3  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( ( X  .x.  Y )  =  .0. 
->  ( F `  ( X  .x.  Y ) )  =  0 ) )
2928necon3d 2684 . 2  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( ( F `  ( X  .x.  Y ) )  =/=  0  -> 
( X  .x.  Y
)  =/=  .0.  )
)
3023, 29mpd 15 1  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( X  .x.  Y
)  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   ` cfv 5579  (class class class)co 6275   RRcr 9480   0cc0 9481    x. cmul 9486   Basecbs 14479   .rcmulr 14545   0gc0g 14684  AbsValcabv 17241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-ico 11524  df-0g 14686  df-mnd 15721  df-grp 15851  df-rng 16981  df-abv 17242
This theorem is referenced by:  abvn0b  17715
  Copyright terms: Public domain W3C validator