MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Unicode version

Theorem abvdiv 17354
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvrec.z  |-  .0.  =  ( 0g `  R )
abvdiv.p  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
abvdiv  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( ( F `  X )  /  ( F `  Y )
) )

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 754 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  F  e.  A )
2 simpr1 1001 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  X  e.  B )
3 simpll 753 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  R  e.  DivRing )
4 simpr2 1002 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  e.  B )
5 simpr3 1003 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  =/=  .0.  )
6 abvneg.b . . . . . 6  |-  B  =  ( Base `  R
)
7 abvrec.z . . . . . 6  |-  .0.  =  ( 0g `  R )
8 eqid 2441 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
96, 7, 8drnginvrcl 17281 . . . . 5  |-  ( ( R  e.  DivRing  /\  Y  e.  B  /\  Y  =/= 
.0.  )  ->  (
( invr `  R ) `  Y )  e.  B
)
103, 4, 5, 9syl3anc 1227 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( invr `  R ) `  Y )  e.  B
)
11 abv0.a . . . . 5  |-  A  =  (AbsVal `  R )
12 eqid 2441 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1311, 6, 12abvmul 17346 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B  /\  ( ( invr `  R
) `  Y )  e.  B )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  ( F `  ( ( invr `  R ) `  Y ) ) ) )
141, 2, 10, 13syl3anc 1227 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  ( F `  ( ( invr `  R ) `  Y ) ) ) )
1511, 6, 7, 8abvrec 17353 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( ( invr `  R ) `  Y ) )  =  ( 1  /  ( F `  Y )
) )
16153adantr1 1154 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( ( invr `  R ) `  Y ) )  =  ( 1  /  ( F `  Y )
) )
1716oveq2d 6293 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( F `  X
)  x.  ( F `
 ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  (
1  /  ( F `
 Y ) ) ) )
1814, 17eqtrd 2482 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  (
1  /  ( F `
 Y ) ) ) )
19 eqid 2441 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
206, 19, 7drngunit 17269 . . . . . 6  |-  ( R  e.  DivRing  ->  ( Y  e.  (Unit `  R )  <->  ( Y  e.  B  /\  Y  =/=  .0.  ) ) )
213, 20syl 16 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( Y  e.  (Unit `  R
)  <->  ( Y  e.  B  /\  Y  =/= 
.0.  ) ) )
224, 5, 21mpbir2and 920 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  e.  (Unit `  R )
)
23 abvdiv.p . . . . 5  |-  ./  =  (/r
`  R )
246, 12, 19, 8, 23dvrval 17202 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  (Unit `  R
) )  ->  ( X  ./  Y )  =  ( X ( .r
`  R ) ( ( invr `  R
) `  Y )
) )
252, 22, 24syl2anc 661 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( X  ./  Y )  =  ( X ( .r
`  R ) ( ( invr `  R
) `  Y )
) )
2625fveq2d 5856 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( F `  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) ) )
2711, 6abvcl 17341 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
281, 2, 27syl2anc 661 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  X )  e.  RR )
2928recnd 9620 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  X )  e.  CC )
3011, 6abvcl 17341 . . . . 5  |-  ( ( F  e.  A  /\  Y  e.  B )  ->  ( F `  Y
)  e.  RR )
311, 4, 30syl2anc 661 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  e.  RR )
3231recnd 9620 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  e.  CC )
3311, 6, 7abvne0 17344 . . . 4  |-  ( ( F  e.  A  /\  Y  e.  B  /\  Y  =/=  .0.  )  -> 
( F `  Y
)  =/=  0 )
341, 4, 5, 33syl3anc 1227 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  =/=  0 )
3529, 32, 34divrecd 10324 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( F `  X
)  /  ( F `
 Y ) )  =  ( ( F `
 X )  x.  ( 1  /  ( F `  Y )
) ) )
3618, 26, 353eqtr4d 2492 1  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( ( F `  X )  /  ( F `  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   ` cfv 5574  (class class class)co 6277   RRcr 9489   0cc0 9490   1c1 9491    x. cmul 9495    / cdiv 10207   Basecbs 14504   .rcmulr 14570   0gc0g 14709  Unitcui 17156   invrcinvr 17188  /rcdvr 17199   DivRingcdr 17264  AbsValcabv 17333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-tpos 6953  df-recs 7040  df-rdg 7074  df-er 7309  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-ico 11539  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-0g 14711  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-grp 15926  df-minusg 15927  df-mgp 17010  df-ur 17022  df-ring 17068  df-oppr 17140  df-dvdsr 17158  df-unit 17159  df-invr 17189  df-dvr 17200  df-drng 17266  df-abv 17334
This theorem is referenced by:  ostthlem1  23677
  Copyright terms: Public domain W3C validator