MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Structured version   Unicode version

Theorem abvcxp 23669
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a  |-  A  =  (AbsVal `  R )
abvcxp.b  |-  B  =  ( Base `  R
)
abvcxp.f  |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^c  S ) )
Assertion
Ref Expression
abvcxp  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G  e.  A
)
Distinct variable groups:    x, A    x, B    x, F    x, R    x, S
Allowed substitution hint:    G( x)

Proof of Theorem abvcxp
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvcxp.a . . 3  |-  A  =  (AbsVal `  R )
21a1i 11 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  A  =  (AbsVal `  R ) )
3 abvcxp.b . . 3  |-  B  =  ( Base `  R
)
43a1i 11 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  B  =  (
Base `  R )
)
5 eqidd 2442 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( +g  `  R
)  =  ( +g  `  R ) )
6 eqidd 2442 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( .r `  R )  =  ( .r `  R ) )
7 eqidd 2442 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0g `  R )  =  ( 0g `  R ) )
81abvrcl 17341 . . 3  |-  ( F  e.  A  ->  R  e.  Ring )
98adantr 465 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  R  e.  Ring )
101, 3abvcl 17344 . . . . 5  |-  ( ( F  e.  A  /\  x  e.  B )  ->  ( F `  x
)  e.  RR )
1110adantlr 714 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  ( F `  x )  e.  RR )
121, 3abvge0 17345 . . . . 5  |-  ( ( F  e.  A  /\  x  e.  B )  ->  0  <_  ( F `  x ) )
1312adantlr 714 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  0  <_  ( F `  x
) )
14 simpr 461 . . . . . . 7  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  ( 0 (,] 1 ) )
15 0xr 9640 . . . . . . . 8  |-  0  e.  RR*
16 1re 9595 . . . . . . . 8  |-  1  e.  RR
17 elioc2 11593 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( S  e.  ( 0 (,] 1 )  <->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) ) )
1815, 16, 17mp2an 672 . . . . . . 7  |-  ( S  e.  ( 0 (,] 1 )  <->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
1914, 18sylib 196 . . . . . 6  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
2019simp1d 1007 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  RR )
2120adantr 465 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  S  e.  RR )
2211, 13, 21recxpcld 22973 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  (
( F `  x
)  ^c  S )  e.  RR )
23 abvcxp.f . . 3  |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^c  S ) )
2422, 23fmptd 6037 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G : B --> RR )
25 eqid 2441 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
263, 25ring0cl 17091 . . . . 5  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
279, 26syl 16 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0g `  R )  e.  B
)
28 fveq2 5853 . . . . . 6  |-  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  ( F `  ( 0g `  R ) ) )
2928oveq1d 6293 . . . . 5  |-  ( x  =  ( 0g `  R )  ->  (
( F `  x
)  ^c  S )  =  ( ( F `  ( 0g
`  R ) )  ^c  S ) )
30 ovex 6306 . . . . 5  |-  ( ( F `  ( 0g
`  R ) )  ^c  S )  e.  _V
3129, 23, 30fvmpt 5938 . . . 4  |-  ( ( 0g `  R )  e.  B  ->  ( G `  ( 0g `  R ) )  =  ( ( F `  ( 0g `  R ) )  ^c  S ) )
3227, 31syl 16 . . 3  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( G `  ( 0g `  R ) )  =  ( ( F `  ( 0g
`  R ) )  ^c  S ) )
331, 25abv0 17351 . . . . . 6  |-  ( F  e.  A  ->  ( F `  ( 0g `  R ) )  =  0 )
3433adantr 465 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( F `  ( 0g `  R ) )  =  0 )
3534oveq1d 6293 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 ( 0g `  R ) )  ^c  S )  =  ( 0  ^c  S ) )
3620recnd 9622 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  CC )
3719simp2d 1008 . . . . . 6  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  0  <  S
)
3837gt0ne0d 10120 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  =/=  0
)
3936, 380cxpd 22960 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0  ^c  S )  =  0 )
4035, 39eqtrd 2482 . . 3  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 ( 0g `  R ) )  ^c  S )  =  0 )
4132, 40eqtrd 2482 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( G `  ( 0g `  R ) )  =  0 )
42 simp1l 1019 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  F  e.  A )
43 simp2 996 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  y  e.  B )
441, 3abvcl 17344 . . . . . . 7  |-  ( ( F  e.  A  /\  y  e.  B )  ->  ( F `  y
)  e.  RR )
4542, 43, 44syl2anc 661 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( F `  y )  e.  RR )
461, 3, 25abvgt0 17348 . . . . . . 7  |-  ( ( F  e.  A  /\  y  e.  B  /\  y  =/=  ( 0g `  R ) )  -> 
0  <  ( F `  y ) )
47463adant1r 1220 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( F `  y
) )
4845, 47elrpd 11260 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( F `  y )  e.  RR+ )
49203ad2ant1 1016 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  S  e.  RR )
5048, 49rpcxpcld 22980 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  (
( F `  y
)  ^c  S )  e.  RR+ )
5150rpgt0d 11265 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( ( F `  y )  ^c  S ) )
52 fveq2 5853 . . . . . 6  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
5352oveq1d 6293 . . . . 5  |-  ( x  =  y  ->  (
( F `  x
)  ^c  S )  =  ( ( F `  y )  ^c  S ) )
54 ovex 6306 . . . . 5  |-  ( ( F `  y )  ^c  S )  e.  _V
5553, 23, 54fvmpt 5938 . . . 4  |-  ( y  e.  B  ->  ( G `  y )  =  ( ( F `
 y )  ^c  S ) )
5643, 55syl 16 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( G `  y )  =  ( ( F `
 y )  ^c  S ) )
5751, 56breqtrrd 4460 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( G `  y
) )
58 simp1l 1019 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  F  e.  A
)
59 simp2l 1021 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  y  e.  B
)
60 simp3l 1023 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  z  e.  B
)
61 eqid 2441 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
621, 3, 61abvmul 17349 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B  /\  z  e.  B )  ->  ( F `  (
y ( .r `  R ) z ) )  =  ( ( F `  y )  x.  ( F `  z ) ) )
6358, 59, 60, 62syl3anc 1227 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( .r
`  R ) z ) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
6463oveq1d 6293 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( .r `  R ) z ) )  ^c  S )  =  ( ( ( F `  y )  x.  ( F `  z )
)  ^c  S ) )
6558, 59, 44syl2anc 661 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  y )  e.  RR )
661, 3abvge0 17345 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B )  ->  0  <_  ( F `  y ) )
6758, 59, 66syl2anc 661 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  y )
)
681, 3abvcl 17344 . . . . . 6  |-  ( ( F  e.  A  /\  z  e.  B )  ->  ( F `  z
)  e.  RR )
6958, 60, 68syl2anc 661 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  z )  e.  RR )
701, 3abvge0 17345 . . . . . 6  |-  ( ( F  e.  A  /\  z  e.  B )  ->  0  <_  ( F `  z ) )
7158, 60, 70syl2anc 661 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  z )
)
72363ad2ant1 1016 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  CC )
7365, 67, 69, 71, 72mulcxpd 22978 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  x.  ( F `  z ) )  ^c  S )  =  ( ( ( F `  y )  ^c  S )  x.  (
( F `  z
)  ^c  S ) ) )
7464, 73eqtrd 2482 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( .r `  R ) z ) )  ^c  S )  =  ( ( ( F `  y )  ^c  S )  x.  (
( F `  z
)  ^c  S ) ) )
7593ad2ant1 1016 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  R  e.  Ring )
763, 61ringcl 17083 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( .r `  R ) z )  e.  B )
7775, 59, 60, 76syl3anc 1227 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( y ( .r `  R ) z )  e.  B
)
78 fveq2 5853 . . . . . 6  |-  ( x  =  ( y ( .r `  R ) z )  ->  ( F `  x )  =  ( F `  ( y ( .r
`  R ) z ) ) )
7978oveq1d 6293 . . . . 5  |-  ( x  =  ( y ( .r `  R ) z )  ->  (
( F `  x
)  ^c  S )  =  ( ( F `  ( y ( .r `  R
) z ) )  ^c  S ) )
80 ovex 6306 . . . . 5  |-  ( ( F `  ( y ( .r `  R
) z ) )  ^c  S )  e.  _V
8179, 23, 80fvmpt 5938 . . . 4  |-  ( ( y ( .r `  R ) z )  e.  B  ->  ( G `  ( y
( .r `  R
) z ) )  =  ( ( F `
 ( y ( .r `  R ) z ) )  ^c  S ) )
8277, 81syl 16 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( .r
`  R ) z ) )  =  ( ( F `  (
y ( .r `  R ) z ) )  ^c  S ) )
8359, 55syl 16 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  y )  =  ( ( F `  y
)  ^c  S ) )
84 fveq2 5853 . . . . . . 7  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
8584oveq1d 6293 . . . . . 6  |-  ( x  =  z  ->  (
( F `  x
)  ^c  S )  =  ( ( F `  z )  ^c  S ) )
86 ovex 6306 . . . . . 6  |-  ( ( F `  z )  ^c  S )  e.  _V
8785, 23, 86fvmpt 5938 . . . . 5  |-  ( z  e.  B  ->  ( G `  z )  =  ( ( F `
 z )  ^c  S ) )
8860, 87syl 16 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  z )  =  ( ( F `  z
)  ^c  S ) )
8983, 88oveq12d 6296 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( G `
 y )  x.  ( G `  z
) )  =  ( ( ( F `  y )  ^c  S )  x.  (
( F `  z
)  ^c  S ) ) )
9074, 82, 893eqtr4d 2492 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( .r
`  R ) z ) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) )
91 ringgrp 17074 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9275, 91syl 16 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  R  e.  Grp )
93 eqid 2441 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
943, 93grpcl 15934 . . . . . . 7  |-  ( ( R  e.  Grp  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  R ) z )  e.  B )
9592, 59, 60, 94syl3anc 1227 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( y ( +g  `  R ) z )  e.  B
)
961, 3abvcl 17344 . . . . . 6  |-  ( ( F  e.  A  /\  ( y ( +g  `  R ) z )  e.  B )  -> 
( F `  (
y ( +g  `  R
) z ) )  e.  RR )
9758, 95, 96syl2anc 661 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  e.  RR )
981, 3abvge0 17345 . . . . . 6  |-  ( ( F  e.  A  /\  ( y ( +g  `  R ) z )  e.  B )  -> 
0  <_  ( F `  ( y ( +g  `  R ) z ) ) )
9958, 95, 98syl2anc 661 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  ( y
( +g  `  R ) z ) ) )
100193ad2ant1 1016 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
101100simp1d 1007 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  RR )
10297, 99, 101recxpcld 22973 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^c  S )  e.  RR )
10365, 69readdcld 9623 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  e.  RR )
10465, 69, 67, 71addge0d 10131 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  (
( F `  y
)  +  ( F `
 z ) ) )
105103, 104, 101recxpcld 22973 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  +  ( F `  z ) )  ^c  S )  e.  RR )
10665, 67, 101recxpcld 22973 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 y )  ^c  S )  e.  RR )
10769, 71, 101recxpcld 22973 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 z )  ^c  S )  e.  RR )
108106, 107readdcld 9623 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  ^c  S )  +  ( ( F `
 z )  ^c  S ) )  e.  RR )
1091, 3, 93abvtri 17350 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B  /\  z  e.  B )  ->  ( F `  (
y ( +g  `  R
) z ) )  <_  ( ( F `
 y )  +  ( F `  z
) ) )
11058, 59, 60, 109syl3anc 1227 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  <_  ( ( F `  y )  +  ( F `  z ) ) )
111100simp2d 1008 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <  S
)
112101, 111elrpd 11260 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  RR+ )
11397, 99, 103, 104, 112cxple2d 22977 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  <_ 
( ( F `  y )  +  ( F `  z ) )  <->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^c  S )  <_  (
( ( F `  y )  +  ( F `  z ) )  ^c  S ) ) )
114110, 113mpbid 210 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^c  S )  <_  (
( ( F `  y )  +  ( F `  z ) )  ^c  S ) )
115100simp3d 1009 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  <_  1
)
11665, 67, 69, 71, 112, 115cxpaddle 22995 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  +  ( F `  z ) )  ^c  S )  <_  (
( ( F `  y )  ^c  S )  +  ( ( F `  z
)  ^c  S ) ) )
117102, 105, 108, 114, 116letrd 9739 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^c  S )  <_  (
( ( F `  y )  ^c  S )  +  ( ( F `  z
)  ^c  S ) ) )
118 fveq2 5853 . . . . . 6  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( F `  x )  =  ( F `  ( y ( +g  `  R ) z ) ) )
119118oveq1d 6293 . . . . 5  |-  ( x  =  ( y ( +g  `  R ) z )  ->  (
( F `  x
)  ^c  S )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^c  S ) )
120 ovex 6306 . . . . 5  |-  ( ( F `  ( y ( +g  `  R
) z ) )  ^c  S )  e.  _V
121119, 23, 120fvmpt 5938 . . . 4  |-  ( ( y ( +g  `  R
) z )  e.  B  ->  ( G `  ( y ( +g  `  R ) z ) )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^c  S ) )
12295, 121syl 16 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( +g  `  R ) z ) )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^c  S ) )
12383, 88oveq12d 6296 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( G `
 y )  +  ( G `  z
) )  =  ( ( ( F `  y )  ^c  S )  +  ( ( F `  z
)  ^c  S ) ) )
124117, 122, 1233brtr4d 4464 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( +g  `  R ) z ) )  <_  ( ( G `  y )  +  ( G `  z ) ) )
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 17340 1  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   class class class wbr 4434    |-> cmpt 4492   ` cfv 5575  (class class class)co 6278   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497   RR*cxr 9627    < clt 9628    <_ cle 9629   (,]cioc 11536   Basecbs 14506   +g cplusg 14571   .rcmulr 14572   0gc0g 14711   Grpcgrp 15924   Ringcrg 17069  AbsValcabv 17336    ^c ccxp 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-iin 4315  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-se 4826  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-isom 5584  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6522  df-om 6683  df-1st 6782  df-2nd 6783  df-supp 6901  df-recs 7041  df-rdg 7075  df-1o 7129  df-2o 7130  df-oadd 7133  df-er 7310  df-map 7421  df-pm 7422  df-ixp 7469  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-div 10210  df-nn 10540  df-2 10597  df-3 10598  df-4 10599  df-5 10600  df-6 10601  df-7 10602  df-8 10603  df-9 10604  df-10 10605  df-n0 10799  df-z 10868  df-dec 10982  df-uz 11088  df-q 11189  df-rp 11227  df-xneg 11324  df-xadd 11325  df-xmul 11326  df-ioo 11539  df-ioc 11540  df-ico 11541  df-icc 11542  df-fz 11679  df-fzo 11801  df-fl 11905  df-mod 11973  df-seq 12084  df-exp 12143  df-fac 12330  df-bc 12357  df-hash 12382  df-shft 12876  df-cj 12908  df-re 12909  df-im 12910  df-sqrt 13044  df-abs 13045  df-limsup 13270  df-clim 13287  df-rlim 13288  df-sum 13485  df-ef 13678  df-sin 13680  df-cos 13681  df-pi 13683  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-starv 14586  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-unif 14594  df-hom 14595  df-cco 14596  df-rest 14694  df-topn 14695  df-0g 14713  df-gsum 14714  df-topgen 14715  df-pt 14716  df-prds 14719  df-xrs 14773  df-qtop 14778  df-imas 14779  df-xps 14781  df-mre 14857  df-mrc 14858  df-acs 14860  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-submnd 15838  df-grp 15928  df-minusg 15929  df-mulg 15931  df-cntz 16226  df-cmn 16671  df-mgp 17013  df-ring 17071  df-abv 17337  df-psmet 18282  df-xmet 18283  df-met 18284  df-bl 18285  df-mopn 18286  df-fbas 18287  df-fg 18288  df-cnfld 18292  df-top 19269  df-bases 19271  df-topon 19272  df-topsp 19273  df-cld 19390  df-ntr 19391  df-cls 19392  df-nei 19469  df-lp 19507  df-perf 19508  df-cn 19598  df-cnp 19599  df-haus 19686  df-tx 19933  df-hmeo 20126  df-fil 20217  df-fm 20309  df-flim 20310  df-flf 20311  df-xms 20693  df-ms 20694  df-tms 20695  df-cncf 21252  df-limc 22140  df-dv 22141  df-log 22813  df-cxp 22814
This theorem is referenced by:  ostth2  23691  ostth  23693
  Copyright terms: Public domain W3C validator