MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv0 Structured version   Unicode version

Theorem abv0 17049
Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abv0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
abv0  |-  ( F  e.  A  ->  ( F `  .0.  )  =  0 )

Proof of Theorem abv0
StepHypRef Expression
1 abv0.a . . . 4  |-  A  =  (AbsVal `  R )
21abvrcl 17039 . . 3  |-  ( F  e.  A  ->  R  e.  Ring )
3 eqid 2454 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
4 abv0.z . . . 4  |-  .0.  =  ( 0g `  R )
53, 4rng0cl 16799 . . 3  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
62, 5syl 16 . 2  |-  ( F  e.  A  ->  .0.  e.  ( Base `  R
) )
7 eqid 2454 . . 3  |-  .0.  =  .0.
81, 3, 4abveq0 17044 . . 3  |-  ( ( F  e.  A  /\  .0.  e.  ( Base `  R
) )  ->  (
( F `  .0.  )  =  0  <->  .0.  =  .0.  ) )
97, 8mpbiri 233 . 2  |-  ( ( F  e.  A  /\  .0.  e.  ( Base `  R
) )  ->  ( F `  .0.  )  =  0 )
106, 9mpdan 668 1  |-  ( F  e.  A  ->  ( F `  .0.  )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   ` cfv 5529   0cc0 9397   Basecbs 14296   0gc0g 14501   Ringcrg 16778  AbsValcabv 17034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-map 7329  df-0g 14503  df-mnd 15538  df-grp 15668  df-rng 16780  df-abv 17035
This theorem is referenced by:  abvdom  17056  abvres  17057  abvcxp  23007  qabvle  23017  ostthlem1  23019  ostth2lem2  23026  ostth3  23030
  Copyright terms: Public domain W3C validator