MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absval Unicode version

Theorem absval 11998
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )

Proof of Theorem absval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . 4  |-  ( x  =  A  ->  (
* `  x )  =  ( * `  A ) )
2 oveq12 6049 . . . 4  |-  ( ( x  =  A  /\  ( * `  x
)  =  ( * `
 A ) )  ->  ( x  x.  ( * `  x
) )  =  ( A  x.  ( * `
 A ) ) )
31, 2mpdan 650 . . 3  |-  ( x  =  A  ->  (
x  x.  ( * `
 x ) )  =  ( A  x.  ( * `  A
) ) )
43fveq2d 5691 . 2  |-  ( x  =  A  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
5 df-abs 11996 . 2  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
6 fvex 5701 . 2  |-  ( sqr `  ( A  x.  (
* `  A )
) )  e.  _V
74, 5, 6fvmpt 5765 1  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   CCcc 8944    x. cmul 8951   *ccj 11856   sqrcsqr 11993   abscabs 11994
This theorem is referenced by:  absneg  12037  abscl  12038  abscj  12039  absvalsq  12040  absval2  12044  abs0  12045  absi  12046  absge0  12047  absrpcl  12048  absmul  12054  absid  12056  absre  12061  absf  12096  cphabscl  19101  tchcphlem2  19146  siii  22307  norm-iii-i  22594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-abs 11996
  Copyright terms: Public domain W3C validator