MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Structured version   Unicode version

Theorem abstri 13245
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )

Proof of Theorem abstri
StepHypRef Expression
1 2re 10601 . . . . . 6  |-  2  e.  RR
21a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR )
3 simpl 455 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 simpr 459 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54cjcld 13111 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  B
)  e.  CC )
63, 5mulcld 9605 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
76recld 13109 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  e.  RR )
82, 7remulcld 9613 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  e.  RR )
9 abscl 13193 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
103, 9syl 16 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
11 abscl 13193 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
124, 11syl 16 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
1310, 12remulcld 9613 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  B ) )  e.  RR )
142, 13remulcld 9613 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  RR )
1510resqcld 12318 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  RR )
1612resqcld 12318 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  RR )
1715, 16readdcld 9612 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  e.  RR )
18 releabs 13236 . . . . . . 7  |-  ( ( A  x.  ( * `
 B ) )  e.  CC  ->  (
Re `  ( A  x.  ( * `  B
) ) )  <_ 
( abs `  ( A  x.  ( * `  B ) ) ) )
196, 18syl 16 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( abs `  ( A  x.  ( * `  B ) ) ) )
20 absmul 13209 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
213, 5, 20syl2anc 659 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
22 abscj 13194 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( * `  B ) )  =  ( abs `  B
) )
234, 22syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
* `  B )
)  =  ( abs `  B ) )
2423oveq2d 6286 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  ( * `  B
) ) )  =  ( ( abs `  A
)  x.  ( abs `  B ) ) )
2521, 24eqtrd 2495 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
2619, 25breqtrd 4463 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( ( abs `  A )  x.  ( abs `  B ) ) )
27 2rp 11226 . . . . . . 7  |-  2  e.  RR+
2827a1i 11 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR+ )
297, 13, 28lemul2d 11299 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  (
* `  B )
) )  <_  (
( abs `  A
)  x.  ( abs `  B ) )  <->  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) )  <_ 
( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) ) )
3026, 29mpbid 210 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  <_  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )
318, 14, 17, 30leadd2dd 10163 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  <_  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
32 sqabsadd 13197 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
3310recnd 9611 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  CC )
3412recnd 9611 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  CC )
35 binom2 12265 . . . . 5  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  -> 
( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3633, 34, 35syl2anc 659 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3715recnd 9611 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  CC )
3814recnd 9611 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  CC )
3916recnd 9611 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  CC )
4037, 38, 39add32d 9793 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4136, 40eqtrd 2495 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4231, 32, 413brtr4d 4469 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  <_  ( ( ( abs `  A )  +  ( abs `  B
) ) ^ 2 ) )
43 addcl 9563 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
44 abscl 13193 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  ( abs `  ( A  +  B ) )  e.  RR )
4543, 44syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  e.  RR )
4610, 12readdcld 9612 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  +  ( abs `  B ) )  e.  RR )
47 absge0 13202 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  0  <_  ( abs `  ( A  +  B )
) )
4843, 47syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  ( A  +  B
) ) )
49 absge0 13202 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
503, 49syl 16 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
51 absge0 13202 . . . . 5  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
524, 51syl 16 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
5310, 12, 50, 52addge0d 10124 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
5445, 46, 48, 53le2sqd 12327 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) )  <->  ( ( abs `  ( A  +  B ) ) ^
2 )  <_  (
( ( abs `  A
)  +  ( abs `  B ) ) ^
2 ) ) )
5542, 54mpbird 232 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481    + caddc 9484    x. cmul 9486    <_ cle 9618   2c2 10581   RR+crp 11221   ^cexp 12148   *ccj 13011   Recre 13012   abscabs 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151
This theorem is referenced by:  abs3dif  13246  abs2dif2  13248  abstrii  13322  abstrid  13369  absabv  18670  cnnv  25780  ftc1anclem7  30336  ftc1anclem8  30337
  Copyright terms: Public domain W3C validator