MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssinper Structured version   Unicode version

Theorem abssinper 23019
Description: The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 10808 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 halfcl 10703 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  /  2 )  e.  CC )
3 2cn 10545 . . . . . . . . . . . . 13  |-  2  e.  CC
4 picn 22960 . . . . . . . . . . . . 13  |-  pi  e.  CC
5 mulass 9513 . . . . . . . . . . . . 13  |-  ( ( ( K  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
63, 4, 5mp3an23 1314 . . . . . . . . . . . 12  |-  ( ( K  /  2 )  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
72, 6syl 16 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
8 2ne0 10567 . . . . . . . . . . . . 13  |-  2  =/=  0
9 divcan1 10155 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( K  /  2
)  x.  2 )  =  K )
103, 8, 9mp3an23 1314 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  2 )  =  K )
1110oveq1d 6233 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( K  x.  pi ) )
127, 11eqtr3d 2439 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
131, 12syl 16 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
1413adantl 464 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  x.  (
2  x.  pi ) )  =  ( K  x.  pi ) )
1514oveq2d 6234 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( ( K  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( K  x.  pi ) ) )
1615fveq2d 5795 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  +  ( K  x.  pi ) ) ) )
1716eqcomd 2404 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
1817adantr 463 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
19 sinper 22982 . . . . 5  |-  ( ( A  e.  CC  /\  ( K  /  2
)  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2019adantlr 712 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2118, 20eqtrd 2437 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  A
) )
2221fveq2d 5795 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
23 peano2cn 9685 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  +  1 )  e.  CC )
24 halfcl 10703 . . . . . . . . . . . 12  |-  ( ( K  +  1 )  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
2523, 24syl 16 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
263, 4mulcli 9534 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
27 mulcl 9509 . . . . . . . . . . 11  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )
2825, 26, 27sylancl 660 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )
29 subadd23 9767 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
304, 29mp3an2 1310 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )  ->  ( ( A  -  pi )  +  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  -  pi ) ) )
3128, 30sylan2 472 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
32 divcan1 10155 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  +  1 )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
333, 8, 32mp3an23 1314 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  +  1 )  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3423, 33syl 16 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3534oveq1d 6233 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  +  1 )  x.  pi ) )
36 ax-1cn 9483 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 adddir 9520 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  pi  e.  CC )  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3836, 4, 37mp3an23 1314 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3935, 38eqtrd 2437 . . . . . . . . . . . . . . 15  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
404mulid2i 9532 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  pi )  =  pi
4140oveq2i 6229 . . . . . . . . . . . . . . 15  |-  ( ( K  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( K  x.  pi )  +  pi )
4239, 41syl6req 2454 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( K  x.  pi )  +  pi )  =  ( ( ( ( K  +  1 )  /  2 )  x.  2 )  x.  pi ) )
43 mulass 9513 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
443, 4, 43mp3an23 1314 . . . . . . . . . . . . . . 15  |-  ( ( ( K  +  1 )  /  2 )  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4525, 44syl 16 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4642, 45eqtr2d 2438 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  =  ( ( K  x.  pi )  +  pi ) )
4746oveq1d 6233 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( ( ( K  x.  pi )  +  pi )  -  pi ) )
48 mulcl 9509 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  pi  e.  CC )  -> 
( K  x.  pi )  e.  CC )
494, 48mpan2 669 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  ( K  x.  pi )  e.  CC )
50 pncan 9761 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  pi )  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5149, 4, 50sylancl 660 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5247, 51eqtrd 2437 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5352adantl 464 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5453oveq2d 6234 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi ) )  =  ( A  +  ( K  x.  pi ) ) )
5531, 54eqtr2d 2438 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
561, 55sylan2 472 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
5756fveq2d 5795 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
5857adantr 463 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
59 subcl 9754 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  pi  e.  CC )  -> 
( A  -  pi )  e.  CC )
604, 59mpan2 669 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  -  pi )  e.  CC )
61 sinper 22982 . . . . . . . 8  |-  ( ( ( A  -  pi )  e.  CC  /\  (
( K  +  1 )  /  2 )  e.  ZZ )  -> 
( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6260, 61sylan 469 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( K  + 
1 )  /  2
)  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6362adantlr 712 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
64 sinmpi 22988 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
6564ad2antrr 723 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  -  pi )
)  =  -u ( sin `  A ) )
6663, 65eqtrd 2437 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  -u ( sin `  A ) )
6758, 66eqtrd 2437 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  -u ( sin `  A
) )
6867fveq2d 5795 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  -u ( sin `  A ) ) )
69 sincl 13886 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
7069absnegd 13305 . . . 4  |-  ( A  e.  CC  ->  ( abs `  -u ( sin `  A
) )  =  ( abs `  ( sin `  A ) ) )
7170ad2antrr 723 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  -u ( sin `  A ) )  =  ( abs `  ( sin `  A ) ) )
7268, 71eqtrd 2437 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
73 zeo 10887 . . 3  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7473adantl 464 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7522, 72, 74mpjaodan 784 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1399    e. wcel 1836    =/= wne 2591   ` cfv 5513  (class class class)co 6218   CCcc 9423   0cc0 9425   1c1 9426    + caddc 9428    x. cmul 9430    - cmin 9740   -ucneg 9741    / cdiv 10145   2c2 10524   ZZcz 10803   abscabs 13092   sincsin 13824   picpi 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-inf2 7994  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502  ax-pre-sup 9503  ax-addf 9504  ax-mulf 9505
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-se 4770  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-isom 5522  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-of 6461  df-om 6622  df-1st 6721  df-2nd 6722  df-supp 6840  df-recs 6982  df-rdg 7016  df-1o 7070  df-2o 7071  df-oadd 7074  df-er 7251  df-map 7362  df-pm 7363  df-ixp 7411  df-en 7458  df-dom 7459  df-sdom 7460  df-fin 7461  df-fsupp 7767  df-fi 7808  df-sup 7838  df-oi 7872  df-card 8255  df-cda 8483  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743  df-div 10146  df-nn 10475  df-2 10533  df-3 10534  df-4 10535  df-5 10536  df-6 10537  df-7 10538  df-8 10539  df-9 10540  df-10 10541  df-n0 10735  df-z 10804  df-dec 10918  df-uz 11024  df-q 11124  df-rp 11162  df-xneg 11261  df-xadd 11262  df-xmul 11263  df-ioo 11476  df-ioc 11477  df-ico 11478  df-icc 11479  df-fz 11616  df-fzo 11740  df-fl 11851  df-seq 12034  df-exp 12093  df-fac 12279  df-bc 12306  df-hash 12331  df-shft 12925  df-cj 12957  df-re 12958  df-im 12959  df-sqrt 13093  df-abs 13094  df-limsup 13319  df-clim 13336  df-rlim 13337  df-sum 13534  df-ef 13828  df-sin 13830  df-cos 13831  df-pi 13833  df-struct 14659  df-ndx 14660  df-slot 14661  df-base 14662  df-sets 14663  df-ress 14664  df-plusg 14738  df-mulr 14739  df-starv 14740  df-sca 14741  df-vsca 14742  df-ip 14743  df-tset 14744  df-ple 14745  df-ds 14747  df-unif 14748  df-hom 14749  df-cco 14750  df-rest 14853  df-topn 14854  df-0g 14872  df-gsum 14873  df-topgen 14874  df-pt 14875  df-prds 14878  df-xrs 14932  df-qtop 14937  df-imas 14938  df-xps 14940  df-mre 15016  df-mrc 15017  df-acs 15019  df-mgm 16012  df-sgrp 16051  df-mnd 16061  df-submnd 16107  df-mulg 16200  df-cntz 16495  df-cmn 16940  df-psmet 18547  df-xmet 18548  df-met 18549  df-bl 18550  df-mopn 18551  df-fbas 18552  df-fg 18553  df-cnfld 18557  df-top 19507  df-bases 19509  df-topon 19510  df-topsp 19511  df-cld 19628  df-ntr 19629  df-cls 19630  df-nei 19708  df-lp 19746  df-perf 19747  df-cn 19837  df-cnp 19838  df-haus 19925  df-tx 20171  df-hmeo 20364  df-fil 20455  df-fm 20547  df-flim 20548  df-flf 20549  df-xms 20931  df-ms 20932  df-tms 20933  df-cncf 21490  df-limc 22378  df-dv 22379
This theorem is referenced by:  sinkpi  23020  sineq0  23022  sineq0ALT  34123
  Copyright terms: Public domain W3C validator