MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssexg Structured version   Unicode version

Theorem abssexg 4498
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 4497 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 df-pw 3883 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
32eleq1i 2506 . . 3  |-  ( ~P A  e.  _V  <->  { x  |  x  C_  A }  e.  _V )
4 simpl 457 . . . . 5  |-  ( ( x  C_  A  /\  ph )  ->  x  C_  A
)
54ss2abi 3445 . . . 4  |-  { x  |  ( x  C_  A  /\  ph ) } 
C_  { x  |  x  C_  A }
6 ssexg 4459 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  ph ) }  C_  { x  |  x  C_  A }  /\  { x  |  x 
C_  A }  e.  _V )  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
75, 6mpan 670 . . 3  |-  ( { x  |  x  C_  A }  e.  _V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
83, 7sylbi 195 . 2  |-  ( ~P A  e.  _V  ->  { x  |  ( x 
C_  A  /\  ph ) }  e.  _V )
91, 8syl 16 1  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756   {cab 2429   _Vcvv 2993    C_ wss 3349   ~Pcpw 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-pow 4491
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-v 2995  df-in 3356  df-ss 3363  df-pw 3883
This theorem is referenced by:  pmex  7240  tgval  18582
  Copyright terms: Public domain W3C validator