MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneu Structured version   Unicode version

Theorem absneu 3949
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
Assertion
Ref Expression
absneu  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E! x ph )

Proof of Theorem absneu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sneq 3887 . . . . 5  |-  ( y  =  A  ->  { y }  =  { A } )
21eqeq2d 2454 . . . 4  |-  ( y  =  A  ->  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  { A } ) )
32spcegv 3058 . . 3  |-  ( A  e.  V  ->  ( { x  |  ph }  =  { A }  ->  E. y { x  | 
ph }  =  {
y } ) )
43imp 429 . 2  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E. y { x  |  ph }  =  {
y } )
5 euabsn2 3946 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
64, 5sylibr 212 1  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E! x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   E!weu 2253   {cab 2429   {csn 3877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-v 2974  df-sn 3878
This theorem is referenced by:  rabsneu  3950
  Copyright terms: Public domain W3C validator