MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absnegd Structured version   Unicode version

Theorem absnegd 12950
Description: Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
absnegd  |-  ( ph  ->  ( abs `  -u A
)  =  ( abs `  A ) )

Proof of Theorem absnegd
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 absneg 12781 . 2  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
31, 2syl 16 1  |-  ( ph  ->  ( abs `  -u A
)  =  ( abs `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5433   CCcc 9295   -ucneg 9611   abscabs 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-op 3899  df-uni 4107  df-br 4308  df-opab 4366  df-mpt 4367  df-id 4651  df-po 4656  df-so 4657  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-2 10395  df-cj 12603  df-re 12604  df-im 12605  df-abs 12740
This theorem is referenced by:  abelthlem8  21919  tanabsge  21983  abssinper  21995  cxpcn3  22201  abscxpbnd  22206  cosangneg2d  22218  chordthmlem  22242  atantayl  22347  lgsneg  22673  pntibndlem2  22855  lgamgulmlem2  27031  lgambdd  27038  bddiblnc  28481  ftc1anclem8  28493  stirlinglem5  29892
  Copyright terms: Public domain W3C validator