MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absdifle Structured version   Unicode version

Theorem absdifle 13102
Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
Assertion
Ref Expression
absdifle  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <_  C  <->  ( ( B  -  C )  <_  A  /\  A  <_ 
( B  +  C
) ) ) )

Proof of Theorem absdifle
StepHypRef Expression
1 resubcl 9874 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
2 absle 13099 . . . 4  |-  ( ( ( A  -  B
)  e.  RR  /\  C  e.  RR )  ->  ( ( abs `  ( A  -  B )
)  <_  C  <->  ( -u C  <_  ( A  -  B
)  /\  ( A  -  B )  <_  C
) ) )
31, 2sylan 471 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( abs `  ( A  -  B
) )  <_  C  <->  (
-u C  <_  ( A  -  B )  /\  ( A  -  B
)  <_  C )
) )
433impa 1186 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <_  C  <->  ( -u C  <_  ( A  -  B
)  /\  ( A  -  B )  <_  C
) ) )
5 renegcl 9873 . . . . . 6  |-  ( C  e.  RR  ->  -u C  e.  RR )
6 leaddsub2 10020 . . . . . 6  |-  ( ( B  e.  RR  /\  -u C  e.  RR  /\  A  e.  RR )  ->  ( ( B  +  -u C )  <_  A  <->  -u C  <_  ( A  -  B ) ) )
75, 6syl3an2 1257 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  A  e.  RR )  ->  (
( B  +  -u C )  <_  A  <->  -u C  <_  ( A  -  B ) ) )
873comr 1199 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  -u C )  <_  A  <->  -u C  <_  ( A  -  B ) ) )
9 recn 9573 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
10 recn 9573 . . . . . . 7  |-  ( C  e.  RR  ->  C  e.  CC )
11 negsub 9858 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  -u C )  =  ( B  -  C ) )
129, 10, 11syl2an 477 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  -u C )  =  ( B  -  C ) )
13123adant1 1009 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  -u C )  =  ( B  -  C ) )
1413breq1d 4452 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  -u C )  <_  A  <->  ( B  -  C )  <_  A ) )
158, 14bitr3d 255 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  <_  ( A  -  B )  <->  ( B  -  C )  <_  A
) )
16 lesubadd2 10016 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  B
)  <_  C  <->  A  <_  ( B  +  C ) ) )
1715, 16anbi12d 710 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -u C  <_  ( A  -  B )  /\  ( A  -  B
)  <_  C )  <->  ( ( B  -  C
)  <_  A  /\  A  <_  ( B  +  C ) ) ) )
184, 17bitrd 253 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <_  C  <->  ( ( B  -  C )  <_  A  /\  A  <_ 
( B  +  C
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   CCcc 9481   RRcr 9482    + caddc 9486    <_ cle 9620    - cmin 9796   -ucneg 9797   abscabs 13019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-sup 7892  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-n0 10787  df-z 10856  df-uz 11074  df-rp 11212  df-seq 12066  df-exp 12125  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021
This theorem is referenced by:  elicc4abs  13103  rddif  13124  absdifled  13217
  Copyright terms: Public domain W3C validator