MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Unicode version

Theorem abscxpbnd 20590
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1  |-  ( ph  ->  A  e.  CC )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
abscxpbnd.3  |-  ( ph  ->  0  <_  ( Re `  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
abscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 9606 . . . . 5  |-  1  <_  1
21a1i 11 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  1  <_  1
)
3 oveq12 6049 . . . . . . . 8  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  ^ c  B )  =  ( 0  ^ c  0 ) )
43adantll 695 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^ c  B )  =  ( 0  ^ c  0 ) )
5 0cn 9040 . . . . . . . 8  |-  0  e.  CC
6 cxp0 20514 . . . . . . . 8  |-  ( 0  e.  CC  ->  (
0  ^ c  0 )  =  1 )
75, 6ax-mp 8 . . . . . . 7  |-  ( 0  ^ c  0 )  =  1
84, 7syl6eq 2452 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^ c  B )  =  1 )
98fveq2d 5691 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  ( abs `  1 ) )
10 abs1 12057 . . . . 5  |-  ( abs `  1 )  =  1
119, 10syl6eq 2452 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  1 )
12 fveq2 5687 . . . . . . . . 9  |-  ( B  =  0  ->  (
Re `  B )  =  ( Re ` 
0 ) )
13 re0 11912 . . . . . . . . 9  |-  ( Re
`  0 )  =  0
1412, 13syl6eq 2452 . . . . . . . 8  |-  ( B  =  0  ->  (
Re `  B )  =  0 )
1514oveq2d 6056 . . . . . . 7  |-  ( B  =  0  ->  ( M  ^ c  ( Re
`  B ) )  =  ( M  ^ c  0 ) )
16 abscxpbnd.4 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
1716recnd 9070 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1817cxp0d 20549 . . . . . . . 8  |-  ( ph  ->  ( M  ^ c 
0 )  =  1 )
1918adantr 452 . . . . . . 7  |-  ( (
ph  /\  A  = 
0 )  ->  ( M  ^ c  0 )  =  1 )
2015, 19sylan9eqr 2458 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( M  ^ c  ( Re `  B ) )  =  1 )
21 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  B  =  0 )
2221abs00bd 12051 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  B
)  =  0 )
2322oveq1d 6055 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( abs `  B )  x.  pi )  =  ( 0  x.  pi ) )
24 pire 20325 . . . . . . . . . . 11  |-  pi  e.  RR
2524recni 9058 . . . . . . . . . 10  |-  pi  e.  CC
2625mul02i 9211 . . . . . . . . 9  |-  ( 0  x.  pi )  =  0
2723, 26syl6eq 2452 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( abs `  B )  x.  pi )  =  0 )
2827fveq2d 5691 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  =  ( exp `  0 ) )
29 ef0 12648 . . . . . . 7  |-  ( exp `  0 )  =  1
3028, 29syl6eq 2452 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  =  1 )
3120, 30oveq12d 6058 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  =  ( 1  x.  1 ) )
32 1t1e1 10082 . . . . 5  |-  ( 1  x.  1 )  =  1
3331, 32syl6eq 2452 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  =  1 )
342, 11, 333brtr4d 4202 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
35 simplr 732 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  ->  A  =  0 )
3635oveq1d 6055 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^ c  B )  =  ( 0  ^ c  B
) )
37 abscxpbnd.2 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
3837adantr 452 . . . . . . 7  |-  ( (
ph  /\  A  = 
0 )  ->  B  e.  CC )
39 0cxp 20510 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( 0  ^ c  B )  =  0 )
4038, 39sylan 458 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( 0  ^ c  B )  =  0 )
4136, 40eqtrd 2436 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^ c  B )  =  0 )
4241abs00bd 12051 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^ c  B ) )  =  0 )
43 0re 9047 . . . . . . . . 9  |-  0  e.  RR
4443a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
45 abscxpbnd.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
4645abscld 12193 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  RR )
4745absge0d 12201 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  A ) )
48 abscxpbnd.5 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  <_  M )
4944, 46, 16, 47, 48letrd 9183 . . . . . . 7  |-  ( ph  ->  0  <_  M )
5037recld 11954 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
5116, 49, 50recxpcld 20567 . . . . . 6  |-  ( ph  ->  ( M  ^ c 
( Re `  B
) )  e.  RR )
5251ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( M  ^ c 
( Re `  B
) )  e.  RR )
5337abscld 12193 . . . . . . . 8  |-  ( ph  ->  ( abs `  B
)  e.  RR )
5453ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  B
)  e.  RR )
55 remulcl 9031 . . . . . . 7  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
5654, 24, 55sylancl 644 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
5756reefcld 12645 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
5816, 49, 50cxpge0d 20568 . . . . . 6  |-  ( ph  ->  0  <_  ( M  ^ c  ( Re `  B ) ) )
5958ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( M  ^ c  ( Re `  B ) ) )
6056rpefcld 12661 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR+ )
6160rpge0d 10608 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
6252, 57, 59, 61mulge0d 9559 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6342, 62eqbrtrd 4192 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6434, 63pm2.61dane 2645 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  ( abs `  ( A  ^ c  B ) )  <_ 
( ( M  ^ c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6545adantr 452 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  A  e.  CC )
66 simpr 448 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  A  =/=  0 )
6737adantr 452 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  B  e.  CC )
6865, 66, 67cxpefd 20556 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A  ^ c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
6968fveq2d 5691 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
70 logcl 20419 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
7145, 70sylan 458 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( log `  A )  e.  CC )
7267, 71mulcld 9064 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( B  x.  ( log `  A ) )  e.  CC )
73 absef 12753 . . . . 5  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
7472, 73syl 16 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
7567recld 11954 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  B )  e.  RR )
7671recld 11954 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( log `  A ) )  e.  RR )
7775, 76remulcld 9072 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  e.  RR )
7877recnd 9070 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  e.  CC )
7967imcld 11955 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  B )  e.  RR )
8071imcld 11955 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  e.  RR )
8180renegcld 9420 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  -u (
Im `  ( log `  A ) )  e.  RR )
8279, 81remulcld 9072 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
8382recnd 9070 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
84 efadd 12651 . . . . . 6  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
8578, 83, 84syl2anc 643 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
8679, 80remulcld 9072 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) )  e.  RR )
8786recnd 9070 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) )  e.  CC )
8878, 87negsubd 9373 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  -  ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) ) )
8979recnd 9070 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  B )  e.  CC )
9080recnd 9070 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  e.  CC )
9189, 90mulneg2d 9443 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
9291oveq2d 6056 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9367, 71remuld 11978 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( B  x.  ( log `  A
) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  -  ( ( Im `  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9488, 92, 933eqtr4d 2446 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A
) ) ) )
9594fveq2d 5691 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( exp `  ( Re
`  ( B  x.  ( log `  A ) ) ) ) )
96 relog 20444 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
9745, 96sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
9897oveq2d 6056 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  =  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) )
9998fveq2d 5691 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A ) ) ) ) )
10046recnd 9070 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  e.  CC )
101100adantr 452 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  CC )
10245abs00ad 12050 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  A
)  =  0  <->  A  =  0 ) )
103102necon3bid 2602 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
104103biimpar 472 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  =/=  0 )
10575recnd 9070 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  B )  e.  CC )
106101, 104, 105cxpefd 20556 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^ c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
10799, 106eqtr4d 2439 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) ) )  =  ( ( abs `  A
)  ^ c  ( Re `  B ) ) )
108107oveq1d 6055 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
10985, 95, 1083eqtr3d 2444 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) )  =  ( ( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
11069, 74, 1093eqtrd 2440 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  ( ( ( abs `  A )  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) ) )
11165abscld 12193 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  RR )
11265absge0d 12201 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  A
) )
113111, 112, 75recxpcld 20567 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^ c  ( Re `  B ) )  e.  RR )
11482reefcld 12645 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
115113, 114remulcld 9072 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
11651adantr 452 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( M  ^ c  ( Re
`  B ) )  e.  RR )
117116, 114remulcld 9072 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
11853, 24, 55sylancl 644 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
119118reefcld 12645 . . . . . 6  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
120119adantr 452 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( abs `  B )  x.  pi ) )  e.  RR )
121116, 120remulcld 9072 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) )  e.  RR )
12282rpefcld 12661 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  e.  RR+ )
123122rpge0d 10608 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
12416adantr 452 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  M  e.  RR )
125 abscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <_  ( Re `  B ) )
126125adantr 452 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( Re `  B
) )
12748adantr 452 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  <_  M )
128111, 112, 124, 75, 126, 127cxple2ad 20569 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^ c  ( Re `  B ) )  <_  ( M  ^ c  ( Re `  B ) ) )
129113, 116, 114, 123, 128lemul1ad 9906 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) ) )
13058adantr 452 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( M  ^ c 
( Re `  B
) ) )
13189abscld 12193 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  B ) )  e.  RR )
13281recnd 9070 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  -u (
Im `  ( log `  A ) )  e.  CC )
133132abscld 12193 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  e.  RR )
134131, 133remulcld 9072 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
135118adantr 452 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  pi )  e.  RR )
13682leabsd 12172 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
13789, 132absmuld 12211 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
138136, 137breqtrd 4196 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
13967abscld 12193 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  B )  e.  RR )
140139, 133remulcld 9072 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
141132absge0d 12201 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  -u (
Im `  ( log `  A ) ) ) )
142 absimle 12069 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
14367, 142syl 16 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
144131, 139, 133, 141, 143lemul1ad 9906 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
14524a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  pi  e.  RR )
14667absge0d 12201 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  B
) )
14790absnegd 12206 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  =  ( abs `  ( Im
`  ( log `  A
) ) ) )
148 logimcl 20420 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
14945, 148sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  0 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
150149simpld 446 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  -u pi  <  ( Im `  ( log `  A ) ) )
15124renegcli 9318 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
152 ltle 9119 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
153151, 80, 152sylancr 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  ->  -u pi  <_  ( Im `  ( log `  A ) ) ) )
154150, 153mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  -u pi  <_  ( Im `  ( log `  A ) ) )
155149simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  <_  pi )
156 absle 12074 . . . . . . . . . . . 12  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
15780, 24, 156sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
158154, 155, 157mpbir2and 889 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  ( log `  A ) ) )  <_  pi )
159147, 158eqbrtrd 4192 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  <_  pi )
160133, 145, 139, 146, 159lemul2ad 9907 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
161134, 140, 135, 144, 160letrd 9183 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
16282, 134, 135, 138, 161letrd 9183 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
163 efle 12674 . . . . . . 7  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
16482, 135, 163syl2anc 643 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) 
<->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
165162, 164mpbid 202 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B )  x.  pi ) ) )
166114, 120, 116, 130, 165lemul2ad 9907 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^ c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
167115, 117, 121, 129, 166letrd 9183 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
168110, 167eqbrtrd 4192 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^ c  B ) )  <_ 
( ( M  ^ c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
16964, 168pm2.61dane 2645 1  |-  ( ph  ->  ( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   -ucneg 9248   Recre 11857   Imcim 11858   abscabs 11994   expce 12619   picpi 12624   logclog 20405    ^ c ccxp 20406
This theorem is referenced by:  o1cxp  20766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408
  Copyright terms: Public domain W3C validator