MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Structured version   Unicode version

Theorem abscxpbnd 22171
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1  |-  ( ph  ->  A  e.  CC )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
abscxpbnd.3  |-  ( ph  ->  0  <_  ( Re `  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
abscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 9956 . . . . 5  |-  1  <_  1
21a1i 11 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  1  <_  1
)
3 oveq12 6095 . . . . . . . 8  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  ^c  B )  =  ( 0  ^c  0 ) )
43adantll 713 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  B )  =  ( 0  ^c  0 ) )
5 0cn 9370 . . . . . . . 8  |-  0  e.  CC
6 cxp0 22095 . . . . . . . 8  |-  ( 0  e.  CC  ->  (
0  ^c  0 )  =  1 )
75, 6ax-mp 5 . . . . . . 7  |-  ( 0  ^c  0 )  =  1
84, 7syl6eq 2486 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^c  B )  =  1 )
98fveq2d 5690 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  1 ) )
10 abs1 12778 . . . . 5  |-  ( abs `  1 )  =  1
119, 10syl6eq 2486 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^c  B ) )  =  1 )
12 fveq2 5686 . . . . . . . . 9  |-  ( B  =  0  ->  (
Re `  B )  =  ( Re ` 
0 ) )
13 re0 12633 . . . . . . . . 9  |-  ( Re
`  0 )  =  0
1412, 13syl6eq 2486 . . . . . . . 8  |-  ( B  =  0  ->  (
Re `  B )  =  0 )
1514oveq2d 6102 . . . . . . 7  |-  ( B  =  0  ->  ( M  ^c  ( Re
`  B ) )  =  ( M  ^c  0 ) )
16 abscxpbnd.4 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
1716recnd 9404 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1817cxp0d 22130 . . . . . . . 8  |-  ( ph  ->  ( M  ^c 
0 )  =  1 )
1918adantr 465 . . . . . . 7  |-  ( (
ph  /\  A  = 
0 )  ->  ( M  ^c  0 )  =  1 )
2015, 19sylan9eqr 2492 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( M  ^c  ( Re `  B ) )  =  1 )
21 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  B  =  0 )
2221abs00bd 12772 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  B
)  =  0 )
2322oveq1d 6101 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( abs `  B )  x.  pi )  =  ( 0  x.  pi ) )
24 picn 21902 . . . . . . . . . 10  |-  pi  e.  CC
2524mul02i 9550 . . . . . . . . 9  |-  ( 0  x.  pi )  =  0
2623, 25syl6eq 2486 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( abs `  B )  x.  pi )  =  0 )
2726fveq2d 5690 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  =  ( exp `  0 ) )
28 ef0 13368 . . . . . . 7  |-  ( exp `  0 )  =  1
2927, 28syl6eq 2486 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  =  1 )
3020, 29oveq12d 6104 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  =  ( 1  x.  1 ) )
31 1t1e1 10461 . . . . 5  |-  ( 1  x.  1 )  =  1
3230, 31syl6eq 2486 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  =  1 )
332, 11, 323brtr4d 4317 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
34 simplr 754 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  ->  A  =  0 )
3534oveq1d 6101 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c  B )  =  ( 0  ^c  B ) )
36 abscxpbnd.2 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
3736adantr 465 . . . . . . 7  |-  ( (
ph  /\  A  = 
0 )  ->  B  e.  CC )
38 0cxp 22091 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( 0  ^c  B )  =  0 )
3937, 38sylan 471 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( 0  ^c  B )  =  0 )
4035, 39eqtrd 2470 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^c  B )  =  0 )
4140abs00bd 12772 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^c  B ) )  =  0 )
42 0red 9379 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
43 abscxpbnd.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
4443abscld 12914 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  RR )
4543absge0d 12922 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  A ) )
46 abscxpbnd.5 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  <_  M )
4742, 44, 16, 45, 46letrd 9520 . . . . . . 7  |-  ( ph  ->  0  <_  M )
4836recld 12675 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
4916, 47, 48recxpcld 22148 . . . . . 6  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR )
5049ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( M  ^c 
( Re `  B
) )  e.  RR )
5136abscld 12914 . . . . . . . 8  |-  ( ph  ->  ( abs `  B
)  e.  RR )
5251ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  B
)  e.  RR )
53 pire 21901 . . . . . . 7  |-  pi  e.  RR
54 remulcl 9359 . . . . . . 7  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
5552, 53, 54sylancl 662 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
5655reefcld 13365 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
5716, 47, 48cxpge0d 22149 . . . . . 6  |-  ( ph  ->  0  <_  ( M  ^c  ( Re `  B ) ) )
5857ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( M  ^c  ( Re `  B ) ) )
5955rpefcld 13381 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR+ )
6059rpge0d 11023 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
6150, 56, 58, 60mulge0d 9908 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6241, 61eqbrtrd 4307 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6333, 62pm2.61dane 2684 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  ( abs `  ( A  ^c  B ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6443adantr 465 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  A  e.  CC )
65 simpr 461 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  A  =/=  0 )
6636adantr 465 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  B  e.  CC )
6764, 65, 66cxpefd 22137 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
6867fveq2d 5690 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
69 logcl 22000 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
7043, 69sylan 471 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( log `  A )  e.  CC )
7166, 70mulcld 9398 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( B  x.  ( log `  A ) )  e.  CC )
72 absef 13473 . . . . 5  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
7371, 72syl 16 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
7466recld 12675 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  B )  e.  RR )
7570recld 12675 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( log `  A ) )  e.  RR )
7674, 75remulcld 9406 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  e.  RR )
7776recnd 9404 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  e.  CC )
7866imcld 12676 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  B )  e.  RR )
7970imcld 12676 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  e.  RR )
8079renegcld 9767 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  -u (
Im `  ( log `  A ) )  e.  RR )
8178, 80remulcld 9406 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
8281recnd 9404 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
83 efadd 13371 . . . . . 6  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
8477, 82, 83syl2anc 661 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
8578, 79remulcld 9406 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) )  e.  RR )
8685recnd 9404 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) )  e.  CC )
8777, 86negsubd 9717 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  -  ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) ) )
8878recnd 9404 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  B )  e.  CC )
8979recnd 9404 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  e.  CC )
9088, 89mulneg2d 9790 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
9190oveq2d 6102 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9266, 70remuld 12699 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( B  x.  ( log `  A
) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  -  ( ( Im `  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9387, 91, 923eqtr4d 2480 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A
) ) ) )
9493fveq2d 5690 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( exp `  ( Re
`  ( B  x.  ( log `  A ) ) ) ) )
95 relog 22025 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
9643, 95sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
9796oveq2d 6102 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  =  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) )
9897fveq2d 5690 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A ) ) ) ) )
9944recnd 9404 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  e.  CC )
10099adantr 465 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  CC )
10143abs00ad 12771 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  A
)  =  0  <->  A  =  0 ) )
102101necon3bid 2638 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
103102biimpar 485 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  =/=  0 )
10474recnd 9404 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  B )  e.  CC )
105100, 103, 104cxpefd 22137 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
10698, 105eqtr4d 2473 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) ) )  =  ( ( abs `  A
)  ^c  ( Re `  B ) ) )
107106oveq1d 6101 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
10884, 94, 1073eqtr3d 2478 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
10968, 73, 1083eqtrd 2474 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^c  B ) )  =  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) ) )
11064abscld 12914 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  RR )
11164absge0d 12922 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  A
) )
112110, 111, 74recxpcld 22148 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  e.  RR )
11381reefcld 13365 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
114112, 113remulcld 9406 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
11549adantr 465 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( M  ^c  ( Re
`  B ) )  e.  RR )
116115, 113remulcld 9406 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
11751, 53, 54sylancl 662 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
118117reefcld 13365 . . . . . 6  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
119118adantr 465 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( abs `  B )  x.  pi ) )  e.  RR )
120115, 119remulcld 9406 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) )  e.  RR )
12181rpefcld 13381 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  e.  RR+ )
122121rpge0d 11023 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
12316adantr 465 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  M  e.  RR )
124 abscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <_  ( Re `  B ) )
125124adantr 465 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( Re `  B
) )
12646adantr 465 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  <_  M )
127110, 111, 123, 74, 125, 126cxple2ad 22150 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  <_  ( M  ^c  ( Re `  B ) ) )
128112, 115, 113, 122, 127lemul1ad 10264 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) ) )
12957adantr 465 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( M  ^c 
( Re `  B
) ) )
13088abscld 12914 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  B ) )  e.  RR )
13180recnd 9404 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  -u (
Im `  ( log `  A ) )  e.  CC )
132131abscld 12914 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  e.  RR )
133130, 132remulcld 9406 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
134117adantr 465 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  pi )  e.  RR )
13581leabsd 12893 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
13688, 131absmuld 12932 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
137135, 136breqtrd 4311 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
13866abscld 12914 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  B )  e.  RR )
139138, 132remulcld 9406 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
140131absge0d 12922 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  -u (
Im `  ( log `  A ) ) ) )
141 absimle 12790 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
14266, 141syl 16 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
143130, 138, 132, 140, 142lemul1ad 10264 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
14453a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  pi  e.  RR )
14566absge0d 12922 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  B
) )
14689absnegd 12927 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  =  ( abs `  ( Im
`  ( log `  A
) ) ) )
147 logimcl 22001 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
14843, 147sylan 471 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  0 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
149148simpld 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  -u pi  <  ( Im `  ( log `  A ) ) )
15053renegcli 9662 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
151 ltle 9455 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
152150, 79, 151sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  ->  -u pi  <_  ( Im `  ( log `  A ) ) ) )
153149, 152mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  -u pi  <_  ( Im `  ( log `  A ) ) )
154148simprd 463 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  <_  pi )
155 absle 12795 . . . . . . . . . . . 12  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
15679, 53, 155sylancl 662 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
157153, 154, 156mpbir2and 913 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  ( log `  A ) ) )  <_  pi )
158146, 157eqbrtrd 4307 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  <_  pi )
159132, 144, 138, 145, 158lemul2ad 10265 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
160133, 139, 134, 143, 159letrd 9520 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
16181, 133, 134, 137, 160letrd 9520 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
162 efle 13394 . . . . . . 7  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
16381, 134, 162syl2anc 661 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) 
<->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
164161, 163mpbid 210 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B )  x.  pi ) ) )
165113, 119, 115, 129, 164lemul2ad 10265 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
166114, 116, 120, 128, 165letrd 9520 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
167109, 166eqbrtrd 4307 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^c  B ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
16863, 167pm2.61dane 2684 1  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588   Recre 12578   Imcim 12579   abscabs 12715   expce 13339   picpi 13344   logclog 21986    ^c ccxp 21987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322  df-log 21988  df-cxp 21989
This theorem is referenced by:  o1cxp  22348
  Copyright terms: Public domain W3C validator