MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs3dif Structured version   Unicode version

Theorem abs3dif 12930
Description: Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
abs3dif  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  ( A  -  B ) )  <_ 
( ( abs `  ( A  -  C )
)  +  ( abs `  ( C  -  B
) ) ) )

Proof of Theorem abs3dif
StepHypRef Expression
1 npncan 9734 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  -  C
)  +  ( C  -  B ) )  =  ( A  -  B ) )
213com23 1194 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  +  ( C  -  B ) )  =  ( A  -  B ) )
32fveq2d 5796 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  ( ( A  -  C )  +  ( C  -  B
) ) )  =  ( abs `  ( A  -  B )
) )
4 subcl 9713 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  -  C
)  e.  CC )
543adant2 1007 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  C )  e.  CC )
6 subcl 9713 . . . . 5  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
76ancoms 453 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  -  B
)  e.  CC )
873adant1 1006 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  -  B )  e.  CC )
9 abstri 12929 . . 3  |-  ( ( ( A  -  C
)  e.  CC  /\  ( C  -  B
)  e.  CC )  ->  ( abs `  (
( A  -  C
)  +  ( C  -  B ) ) )  <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( C  -  B )
) ) )
105, 8, 9syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  ( ( A  -  C )  +  ( C  -  B
) ) )  <_ 
( ( abs `  ( A  -  C )
)  +  ( abs `  ( C  -  B
) ) ) )
113, 10eqbrtrrd 4415 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  ( A  -  B ) )  <_ 
( ( abs `  ( A  -  C )
)  +  ( abs `  ( C  -  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   CCcc 9384    + caddc 9389    <_ cle 9523    - cmin 9699   abscabs 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-rp 11096  df-seq 11917  df-exp 11976  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836
This theorem is referenced by:  abs2dif  12931  abs3lem  12937  abs3difi  13007  abs3difd  13057  cnmet  20476
  Copyright terms: Public domain W3C validator