MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs2difabs Structured version   Unicode version

Theorem abs2difabs 12818
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2difabs  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem abs2difabs
StepHypRef Expression
1 abs2dif 12816 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( abs `  B
)  -  ( abs `  A ) )  <_ 
( abs `  ( B  -  A )
) )
21ancoms 450 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
)  -  ( abs `  A ) )  <_ 
( abs `  ( B  -  A )
) )
3 abscl 12763 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
43recnd 9408 . . . 4  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
5 abscl 12763 . . . . 5  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
65recnd 9408 . . . 4  |-  ( B  e.  CC  ->  ( abs `  B )  e.  CC )
7 negsubdi2 9664 . . . 4  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  ->  -u ( ( abs `  A
)  -  ( abs `  B ) )  =  ( ( abs `  B
)  -  ( abs `  A ) ) )
84, 6, 7syl2an 474 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( ( abs `  A )  -  ( abs `  B ) )  =  ( ( abs `  B )  -  ( abs `  A ) ) )
9 abssub 12810 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
102, 8, 93brtr4d 4319 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B )
) )
11 abs2dif 12816 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) )
12 resubcl 9669 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  ( abs `  B )  e.  RR )  -> 
( ( abs `  A
)  -  ( abs `  B ) )  e.  RR )
133, 5, 12syl2an 474 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR )
14 subcl 9605 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
15 abscl 12763 . . . . 5  |-  ( ( A  -  B )  e.  CC  ->  ( abs `  ( A  -  B ) )  e.  RR )
1614, 15syl 16 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
17 absle 12799 . . . 4  |-  ( ( ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR  /\  ( abs `  ( A  -  B
) )  e.  RR )  ->  ( ( abs `  ( ( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
1813, 16, 17syl2anc 656 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
19 lenegcon1 9839 . . . . 5  |-  ( ( ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR  /\  ( abs `  ( A  -  B
) )  e.  RR )  ->  ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  <->  -u ( abs `  ( A  -  B )
)  <_  ( ( abs `  A )  -  ( abs `  B ) ) ) )
2013, 16, 19syl2anc 656 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u ( ( abs `  A )  -  ( abs `  B
) )  <_  ( abs `  ( A  -  B ) )  <->  -u ( abs `  ( A  -  B
) )  <_  (
( abs `  A
)  -  ( abs `  B ) ) ) )
2120anbi1d 699 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  /\  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B
) ) )  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
2218, 21bitr4d 256 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  /\  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B
) ) ) ) )
2310, 11, 22mpbir2and 908 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277    <_ cle 9415    - cmin 9591   -ucneg 9592   abscabs 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721
This theorem is referenced by:  abs2difabsd  12941  abscn2  13072  abs2difabsi  27257
  Copyright terms: Public domain W3C validator