MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs0 Structured version   Unicode version

Theorem abs0 12766
Description: The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abs0  |-  ( abs `  0 )  =  0

Proof of Theorem abs0
StepHypRef Expression
1 0cn 9370 . . 3  |-  0  e.  CC
2 absval 12719 . . 3  |-  ( 0  e.  CC  ->  ( abs `  0 )  =  ( sqr `  (
0  x.  ( * `
 0 ) ) ) )
31, 2ax-mp 5 . 2  |-  ( abs `  0 )  =  ( sqr `  (
0  x.  ( * `
 0 ) ) )
41cjcli 12650 . . . 4  |-  ( * `
 0 )  e.  CC
54mul02i 9550 . . 3  |-  ( 0  x.  ( * ` 
0 ) )  =  0
65fveq2i 5689 . 2  |-  ( sqr `  ( 0  x.  (
* `  0 )
) )  =  ( sqr `  0 )
7 sqr0 12723 . 2  |-  ( sqr `  0 )  =  0
83, 6, 73eqtri 2462 1  |-  ( abs `  0 )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274    x. cmul 9279   *ccj 12577   sqrcsqr 12714   abscabs 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717
This theorem is referenced by:  abs00  12770  abs1m  12815  climconst  13013  rlimconst  13014  fsumabs  13256  georeclim  13324  geoisumr  13330  gcd0id  13699  4sqlem19  14016  absabv  17850  gzrngunit  17858  zringunit  17894  zrngunit  17895  rrxdstprj1  20888  aannenlem2  21775  aalioulem3  21780  tanabsge  21948  sinkpi  21961  sineq0  21963  isosctrlem2  22197  ftalem3  22392  mule1  22466  lgslem2  22616  lgsfcl2  22621  bcsiALT  24549  0cnfn  25352  nmfn0  25359  nmophmi  25403  nmcfnexi  25423  lgamgulmlem1  26984  mblfinlem2  28400  ftc1anclem7  28444  ftc1anclem8  28445  ftc1anc  28446  sineq0ALT  31602
  Copyright terms: Public domain W3C validator