MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2g Structured version   Unicode version

Theorem abrexex2g 6553
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Distinct variable groups:    x, A, y    x, V, y    x, W, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem abrexex2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1678 . . . 4  |-  F/ z E. x  e.  A  ph
2 nfcv 2577 . . . . 5  |-  F/_ y A
3 nfs1v 2147 . . . . 5  |-  F/ y [ z  /  y ] ph
42, 3nfrex 2769 . . . 4  |-  F/ y E. x  e.  A  [ z  /  y ] ph
5 sbequ12 1941 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  [ z  /  y ] ph ) )
65rexbidv 2734 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [
z  /  y ]
ph ) )
71, 4, 6cbvab 2559 . . 3  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  [
z  /  y ]
ph }
8 df-clab 2428 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
98rexbii 2738 . . . 4  |-  ( E. x  e.  A  z  e.  { y  | 
ph }  <->  E. x  e.  A  [ z  /  y ] ph )
109abbii 2553 . . 3  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  =  { z  |  E. x  e.  A  [ z  /  y ] ph }
117, 10eqtr4i 2464 . 2  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  z  e.  { y  |  ph } }
12 df-iun 4170 . . 3  |-  U_ x  e.  A  { y  |  ph }  =  {
z  |  E. x  e.  A  z  e.  { y  |  ph } }
13 iunexg 6552 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  U_ x  e.  A  { y  |  ph }  e.  _V )
1412, 13syl5eqelr 2526 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  e.  _V )
1511, 14syl5eqel 2525 1  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   [wsb 1705    e. wcel 1761   {cab 2427   A.wral 2713   E.wrex 2714   _Vcvv 2970   U_ciun 4168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423
This theorem is referenced by:  ptrescn  19171  sdclem2  28563  sdclem1  28564
  Copyright terms: Public domain W3C validator